All-microwave leakage reduction units for quantum error correction with superconducting transmon qubits

  1. J. F. Marques,
  2. H. Ali,
  3. B. M. Varbanov,
  4. M. Finkel,
  5. H. M. Veen,
  6. S. L. M. van der Meer,
  7. S. Valles-Sanclemente,
  8. N. Muthusubramanian,
  9. M. Beekman,
  10. N. Haider,
  11. B. M. Terhal,
  12. and L. DiCarlo
Minimizing leakage from computational states is a challenge when using many-level systems like superconducting quantum circuits as qubits. We realize and extend the quantum-hardware-efficient,

Logical-qubit operations in an error-detecting surface code

  1. J. F. Marques,
  2. B. M. Varbanov,
  3. M. S. Moreira,
  4. H. Ali,
  5. N. Muthusubramanian,
  6. C. Zachariadis,
  7. F. Battistel,
  8. M. Beekman,
  9. N. Haider,
  10. W. Vlothuizen,
  11. A. Bruno,
  12. B. M. Terhal,
  13. and L. DiCarlo
We realize a suite of logical operations on a distance-two logical qubit stabilized using repeated error detection cycles. Logical operations include initialization into arbitrary states,

Leakage detection for a transmon-based surface code

  1. B. M. Varbanov,
  2. F. Battistel,
  3. B. M. Tarasinski,
  4. V.P. Ostroukh,
  5. T. E. O'Brien,
  6. L. DiCarlo,
  7. and B. M. Terhal
Leakage outside of the qubit computational subspace, present in many leading experimental platforms, constitutes a threatening error for quantum error correction (QEC) for qubits. We