Quantum heat transport devices are currently intensively studied in theory. Experimental realization of quantum heat transport devices is a challenging task. So far, they have beenmostly investigated in experiments with ultra-cold atoms and single atomic traps. Experiments with superconducting qubits have also been carried out and heat transport and heat rectification has been studied in two terminal devices. The structures with three independent terminals offer additional opportunities for realization of heat transistors, heat switches, on-chip masers and even more complicated devices. Here we report an experimental realization of a three-terminal photonic heat transport device based on a superconducting quantum circuit. Its central element is a flux qubit made of a superconducting loop containing three Josephson junctions, which is connected to three resonators terminated by resistors. By heating one of the resistors and monitoring the temperatures of the other two, we determine photonic heat currents in the system and demonstrate their tunability by magnetic field at the level of 1 aW. We determine system parameters by performing microwave transmission measurements on a separate nominally identical sample and, in this way, demonstrate clear correlation between the level splitting of the qubit and the heat currents flowing through it. Our experiment is an important step in the development of on-chip quantum heat transport devices. On the one hand, such devices are of great interest for fundamental science because they allow one to investigate the effect of quantum interference and entanglement on the transport of heat. On the other hand, they also have great practical importance for the rapidly developing field of quantum computing, in which management of heat generated by qubits is a problem.
We report on a robust method to achieve strong coupling between a superconducting flux qubit and a high-quality quarter-wavelength coplanar waveguide resonator. We demonstrate the progressionfrom the strong to ultrastrong coupling regime by varying the length of a shared inductive coupling element, ultimately achieving a qubit-resonator coupling strength of 655 MHz, 10% of the resonator frequency. We derive an analytical expression for the coupling strength in terms of circuit parameters and also discuss the maximum achievable coupling within this framework. We experimentally characterize flux qubits coupled to superconducting resonators using one and two-tone spectroscopy methods, demonstrating excellent agreement with the proposed theoretical model.
We present a theoretical model of an on-chip three level maser in a superconducting circuit based on a single artificial atom and pumped by temperature gradient between thermal bathscoupled to different interlevel transitions. We show that maser powers of the order of few femtowatts, well exceeding the resolution of the sensitive bolometry, can be achieved with typical circuit parameters. We also demonstrate that population inversion in the artificial atom can be detected without measuring coherent radiation output of the maser. For that purpose, the system should operate as a three terminal heat transport device. The hallmark of population inversion is the influx of heat power into the weakly coupled output terminal even though its temperature exceeds the temperatures of the two other terminals.
In miniaturising electrical devices down to nanoscales, heat transfer has turned into a serious obstacle but also potential resource for future developments, both for conventional andquantum computing architectures. Controlling heat transport in superconducting circuits has thus received increasing attention in engineering microwave environments for circuit quantum electrodynamics (cQED) and circuit quantum thermodynamics experiments (cQTD). While theoretical proposals for cQTD devices are numerous, the experimental situation is much less advanced. There exist only relatively few experimental realisations, mostly due to the difficulties in developing the hybrid devices and in interfacing these often technologically contrasting components. Here we show a realisation of a quantum heat rectifier, a thermal equivalent to the electronic diode, utilising a superconducting transmon qubit coupled to two strongly unequal resonators terminated by mesoscopic heat baths. Our work is the experimental realisation of the spin-boson rectifier proposed by Segal and Nitzan.