Extracting the Hamiltonian of interacting quantum-information processing systems is a keystone problem in the realization of complex phenomena and large-scale quantum computers. Theremarkable growth of the field increasingly requires precise, widely-applicable, and modular methods that can model the quantum electrodynamics of the physical circuits, and even of their more-subtle renormalization effects. Here, we present a computationally-efficient method satisfying these criteria. The method partitions a quantum device into compact lumped or quasi-distributed cells. Each is first simulated individually. The composite system is then reduced and mapped to a set of simple subsystem building blocks and their pairwise interactions. The method operates within the quasi-lumped approximation and, with no further approximation, systematically accounts for constraints, couplings, parameter renormalizations, and non-perturbative loading effects. We experimentally validate the method on large-scale, state-of-the-art superconducting quantum processors. We find that the full method improves the experimental agreement by a factor of two over taking standard coupling approximations when tested on the most sensitive and dressed Hamiltonian parameters of the measured devices.
The execution of quantum circuits on real systems has largely been limited to those which are simply time-ordered sequences of unitary operations followed by a projective measurement.As hardware platforms for quantum computing continue to mature in size and capability, it is imperative to enable quantum circuits beyond their conventional construction. Here we break into the realm of dynamic quantum circuits on a superconducting-based quantum system. Dynamic quantum circuits involve not only the evolution of the quantum state throughout the computation, but also periodic measurements of a subset of qubits mid-circuit and concurrent processing of the resulting classical information within timescales shorter than the execution times of the circuits. Using noisy quantum hardware, we explore one of the most fundamental quantum algorithms, quantum phase estimation, in its adaptive version, which exploits dynamic circuits, and compare the results to a non-adaptive implementation of the same algorithm. We demonstrate that the version of real-time quantum computing with dynamic circuits can offer a substantial and tangible advantage when noise and latency are sufficiently low in the system, opening the door to a new realm of available algorithms on real quantum systems.
Nonreciprocal microwave devices play several critical roles in high-fidelity, quantum-nondemolition (QND) measurement schemes. They separate input from output, impose unidirectionalrouting of readout signals, and protect the quantum systems from unwanted noise originated by the output chain. However, state-of-the-art, cryogenic circulators and isolators are disadvantageous in scalable superconducting quantum processors because they use magnetic materials and strong magnetic fields. Here, we realize an active isolator formed by coupling two nondegenerate Josephson mixers in an interferometric scheme. Nonreciprocity is generated by applying a phase gradient between the same-frequency pumps feeding the Josephson mixers, which play the role of the magnetic field in a Faraday medium. To demonstrate the applicability of this Josephson-based isolator for quantum measurements, we incorporate it into the output line of a superconducting qubit, coupled to a fast resonator and a Purcell filter. We also utilize a wideband, superconducting directional coupler for coupling the readout signals into and out of the qubit-resonator system and a quantum-limited Josephson amplifier for boosting the readout fidelity. By using this novel quantum setup, we demonstrate fast, high-fidelity, QND measurements of the qubit while providing more than 20 dB of protection against amplified noise reflected off the Josephson amplifier.
The ability to perform fast, high-fidelity readout of quantum bits (qubits) is essential for the goal of building a quantum computer. However, the parameters of a superconducting qubitdevice necessary to achieve this typically enhance qubit relaxation by spontaneous emission through the measurement channel. Here we design a broadband filter using impedance engineering to allow photons to leave the resonator at the cavity frequency but not at the qubit frequency. This broadband filter is implemented both in an on-chip and off-chip configuration.