regime. Using the intrinsic nonlinearity associated with kinetic inductance of thin film materials, we realize four-wave mixing at millimeter-wave frequencies, demonstrating a key component for superconducting quantum systems. We report on the performance of niobium nitride resonators around 100 GHz, patterned on thin (20-50 nm) films grown by atomic layer deposition, with sheet inductances up to 212 pH/square and critical temperatures up to 13.9 K. For films thicker than 20 nm, we measure quality factors from 1-6×104, likely limited by two-level systems. Finally we measure degenerate parametric conversion for a 95 GHz device with a forward efficiency up to +16 dB, paving the way for the development of nonlinear quantum devices at millimeter-wave frequencies.
Millimeter-Wave Four-Wave Mixing via Kinetic Inductance for Quantum Devices
Millimeter-wave superconducting devices offer a platform for quantum experiments at temperatures above 1 K, and new avenues for studying light-matter interactions in the strong coupling