Bosonic codes offer a hardware-efficient strategy for quantum error correction by redundantly encoding quantum information in the large Hilbert space of a harmonic oscillator. However,experimental realizations of these codes are often limited by ancilla errors propagating to the encoded logical qubit during syndrome measurements. The Kerr-cat qubit has been proposed as an ancilla for these codes due to its theoretically-exponential noise bias, which would enable fault-tolerant error syndrome measurements, but the coupling required to perform these syndrome measurements has not yet been demonstrated. In this work, we experimentally realize driven parametric coupling of a Kerr-cat qubit to a high-quality-factor microwave cavity and demonstrate a gate set enabling universal quantum control of the cavity. We measure the decoherence of the cavity in the presence of the Kerr-cat and discover excess dephasing due to heating of the Kerr-cat to excited states. By engineering frequency-selective dissipation to counteract this heating, we are able to eliminate this dephasing, thereby demonstrating a high on-off ratio of control. Our results pave the way toward using the Kerr-cat to fault-tolerantly measure error syndromes of bosonic codes.
Encoding a qubit in a high quality superconducting microwave cavity offers the opportunity to perform the first layer of error correction in a single device, but presents a challenge:how can quantum oscillators be controlled while introducing a minimal number of additional error channels? We focus on the two-qubit portion of this control problem by using a 3-wave mixing coupling element to engineer a programmable beamsplitter interaction between two bosonic modes separated by more than an octave in frequency, without introducing major additional sources of decoherence. Combining this with single-oscillator control provided by a dispersively coupled transmon provides a framework for quantum control of multiple encoded qubits. The beamsplitter interaction gbs is fast relative to the timescale of oscillator decoherence, enabling over 103 beamsplitter operations per coherence time, and approaching the typical rate of the dispersive coupling χ used for individual oscillator control. Further, the programmable coupling is engineered without adding unwanted interactions between the oscillators, as evidenced by the high on-off ratio of the operations, which can exceed 105. We then introduce a new protocol to realize a hybrid controlled-SWAP operation in the regime gbs≈χ, in which a transmon provides the control bit for the SWAP of two bosonic modes. Finally, we use this gate in a SWAP test to project a pair of bosonic qubits into a Bell state with measurement-corrected fidelity of 95.5%±0.2%.