Superconducting qubit as a probe of quantum fluctuations in a nonlinear resonator

  1. Maxime Boissonneault,
  2. A. C. Doherty,
  3. F. R. Ong,
  4. P. Bertet,
  5. D. Vion,
  6. D. Esteve,
  7. and A. Blais
In addition to their central role in quantum information processing, qubits have proven to be useful tools in a range of other applications such as enhanced quantum sensing and as spectrometers
of quantum noise. Here we show that a superconducting qubit strongly coupled to a nonlinear resonator can act as a probe of quantum fluctuations of the intra-resonator field. Building on previous work [M. Boissoneault et al. Phys. Rev. A 85, 022305 (2012)], we derive an effective master equation for the qubit which takes into account squeezing of the resonator field. We show how sidebands in the qubit excitation spectrum that are predicted by this model can reveal information about squeezing and quantum heating. The main results of this paper have already been successfully compared to experimental data [F. R. Ong et al. Phys. Rev. Lett. 110, 047001 (2013)] and we present here the details of the derivations.

Quantum Heating of a nonlinear resonator probed by a superconducting qubit

  1. F. R. Ong,
  2. M. Boissonneault,
  3. F. Mallet,
  4. A. C. Doherty,
  5. A. Blais,
  6. D. Vion,
  7. D. Esteve,
  8. and P. Bertet
We measure the quantum fluctuations of a pumped nonlinear resonator, using a superconducting artificial atom as an in-situ probe. The qubit excitation spectrum gives access to the frequency
and temperature of the intracavity field fluctuations. These are found to be in agreement with theoretical predictions; in particular we experimentally observe the phenomenon of quantum heating.