General method for extracting the quantum efficiency of dispersive qubit readout in circuit QED

  1. C. C. Bultink,
  2. B. Tarasinski,
  3. N. Haandbaek,
  4. S. Poletto,
  5. N. Haider,
  6. D. J. Michalak,
  7. A. Bruno,
  8. and L. DiCarlo
We present and demonstrate a general 3-step method for extracting the quantum efficiency of dispersive qubit readout in circuit QED. We use active depletion of post-measurement photons
and optimal integration weight functions on two quadratures to maximize the signal-to-noise ratio of non-steady-state homodyne measurement. We derive analytically and demonstrate experimentally that the method robustly extracts the quantum efficiency for arbitrary readout conditions in the linear regime. We use the proven method to optimally bias a Josephon traveling-wave parametric amplifier and to quantify the different noise contributions in the readout amplification chain.

Demonstration of an ac Josephson junction laser

  1. M.C. Cassidy,
  2. A. Bruno,
  3. S. Rubbert,
  4. M. Irfan,
  5. J. Kammhuber,
  6. R. N. Schouten,
  7. A. R. Akhmerov,
  8. and L.P.Kouwenhoven
Superconducting electronic devices have re-emerged as contenders for both classical and quantum computing due to their fast operation speeds, low dissipation and long coherence times.
An ultimate demonstration of coherence is lasing. We use one of the fundamental aspects of superconductivity, the ac Josephson effect, to demonstrate a laser made from a Josephson junction strongly coupled to a multi-mode superconducting cavity. A dc voltage bias to the junction provides a source of microwave photons, while the circuit’s nonlinearity allows for efficient down-conversion of higher order Josephson frequencies down to the cavity’s fundamental mode. The simple fabrication and operation allows for easy integration with a range of quantum devices, allowing for efficient on-chip generation of coherent microwave photons at low temperatures.

Scalable quantum circuit and control for a superconducting surface code

  1. R. Versluis,
  2. S. Poletto,
  3. N. Khammassi,
  4. N. Haider,
  5. D. J. Michalak,
  6. A. Bruno,
  7. K. Bertels,
  8. and L. DiCarlo
We present a scalable scheme for executing the error-correction cycle of a monolithic surface-code fabric composed of fast-flux-tuneable transmon qubits with nearest-neighbor coupling.
An eight-qubit unit cell forms the basis for repeating both the quantum hardware and coherent control, enabling spatial multiplexing. This control uses three fixed frequencies for all single-qubit gates and a unique frequency detuning pattern for each qubit in the cell. By pipelining the interaction and readout steps of ancilla-based X- and Z-type stabilizer measurements, we can engineer detuning patterns that avoid all second-order transmon-transmon interactions except those exploited in controlled-phase gates, regardless of fabric size. Our scheme is applicable to defect-based and planar logical qubits, including lattice surgery.

Restless Tuneup of High-Fidelity Qubit Gates

  1. M. A. Rol,
  2. C. C. Bultink,
  3. T. E. O'Brien,
  4. S.R. de Jong,
  5. L.S. Theis,
  6. X. Fu,
  7. F. Luthi,
  8. R.F.L. Vermeulen,
  9. J. C. de Sterke,
  10. A. Bruno,
  11. D. Deurloo,
  12. R. N. Schouten,
  13. F.K. Wilhelm,
  14. and L. DiCarlo
We present a tuneup protocol for qubit gates with tenfold speedup over traditional methods reliant on qubit initialization by energy relaxation. This speedup is achieved by constructing
a cost function for Nelder-Mead optimization from real-time correlation of non-demolition measurements interleaving gate operations without pause. Applying the protocol on a transmon qubit achieves 0.999 average Clifford fidelity in one minute, as independently verified using randomized benchmarking and gate set tomography. The adjustable sensitivity of the cost function allows detecting fractional changes in gate error with nearly constant signal-to-noise ratio. The restless concept demonstrated can be readily extended to the tuneup of two-qubit gates and measurement operations.

Experimentally simulating the dynamics of quantum light and matter at ultrastrong coupling

  1. N. K. Langford,
  2. R. Sagastizabal,
  3. M. Kounalakis,
  4. C. Dickel,
  5. A. Bruno,
  6. F. Luthi,
  7. D. J. Thoen,
  8. A. Endo,
  9. and L. DiCarlo
The quantum Rabi model describing the fundamental interaction between light and matter is a cornerstone of quantum physics. It predicts exotic phenomena like quantum phase transitions
and ground-state entanglement in the ultrastrong-coupling (USC) regime, where coupling strengths are comparable to subsystem energies. Despite progress in many experimental platforms, the few experiments reaching USC have been limited to spectroscopy: demonstrating USC dynamics remains an outstanding challenge. Here, we employ a circuit QED chip with moderate coupling between a resonator and transmon qubit to realise accurate digital quantum simulation of USC dynamics. We advance the state of the art in solid-state digital quantum simulation by using up to 90 second-order Trotter steps and probing both subsystems in a combined Hilbert space dimension ∼80, demonstrating the Schr\“odinger-cat like entanglement and build-up of large photon numbers characteristic of deep USC. This work opens the door to exploring extreme USC regimes, quantum phase transitions and many-body effects in the Dicke model.

Active resonator reset in the nonlinear dispersive regime of circuit QED

  1. C. C. Bultink,
  2. M. A. Rol,
  3. T. E. O'Brien,
  4. X. Fu,
  5. B. C. S. Dikken,
  6. R. Vermeulen,
  7. J. C. de Sterke,
  8. A. Bruno,
  9. R. N. Schouten,
  10. and L. DiCarlo
We present two pulse schemes for actively depleting measurement photons from a readout resonator in the nonlinear dispersive regime of circuit QED. One method uses digital feedback
conditioned on the measurement outcome while the other is unconditional. In the absence of analytic forms and symmetries to exploit in this nonlinear regime, the depletion pulses are numerically optimized using the Powell method. We shorten the photon depletion time by more than six inverse resonator linewidths compared to passive depletion by waiting. We quantify the benefit by emulating an ancilla qubit performing repeated quantum parity checks in a repetition code. Fast depletion increases the mean number of cycles to a spurious error detection event from order 1 to 75 at a 1 microsecond cycle time.

Independent, extensible control of same-frequency superconducting qubits by selective broadcasting

  1. S. Asaad,
  2. C. Dickel,
  3. S. Poletto,
  4. A. Bruno,
  5. N. K. Langford,
  6. M. A. Rol,
  7. D. Deurloo,
  8. and L. DiCarlo
A critical ingredient for realizing large-scale quantum information processors will be the ability to make economical use of qubit control hardware. We demonstrate an extensible strategy
for reusing control hardware on same-frequency transmon qubits in a circuit QED chip with surface-code-compatible connectivity. A vector switch matrix enables selective broadcasting of input pulses to multiple transmons with individual tailoring of pulse quadratures for each, as required to minimize the effects of leakage on weakly anharmonic qubits. Using randomized benchmarking, we compare multiple broadcasting strategies that each pass the surface-code error threshold for single-qubit gates. In particular, we introduce a selective-broadcasting control strategy using five pulse primitives, which allows independent, simultaneous Clifford gates on arbitrary numbers of qubits.

Realization of microwave quantum circuits using hybrid superconducting-semiconducting nanowire Josephson elements

  1. G. de Lange,
  2. B. van Heck,
  3. A. Bruno,
  4. D. J. van Woerkom,
  5. A. Geresdi,
  6. S. R. Plissard,
  7. E. P. A. M. Bakkers,
  8. A. R. Akhmerov,
  9. and L. DiCarlo
We report the realization of quantum microwave circuits using hybrid superconductor-semiconductor Josephson elements comprised of InAs nanowires contacted by NbTiN. Capacitively-shunted
single elements behave as transmon qubits with electrically tunable transition frequencies. Two-element circuits also exhibit transmon-like behavior near zero applied flux, but behave as flux qubits at half the flux quantum, where non-sinusoidal current-phase relations in the elements produce a double-well Josephson potential. These hybrid Josephson elements are promising for applications requiring microwave superconducting circuits operating in magnetic field.

Reducing intrinsic loss in superconducting resonators by surface treatment and deep etching of silicon substrates

  1. A. Bruno,
  2. G. de Lange,
  3. S. Asaad,
  4. K. L. van der Enden,
  5. N. K. Langford,
  6. and L. DiCarlo
We present microwave-frequency NbTiN resonators on silicon, systematically achieving internal quality factors above 1 M in the quantum regime. We use two techniques to reduce losses
associated with two-level systems: an additional substrate surface treatment prior to NbTiN deposition to optimize the metal-substrate interface, and deep reactive-ion etching of the substrate to displace the substrate-vacuum interfaces away from high electric fields. The temperature and power dependence of resonator behavior indicate that two-level systems still contribute significantly to energy dissipation, suggesting that more interface optimization could further improve performance.

Detecting bit-flip errors in a logical qubit using stabilizer measurements

  1. D. Ristè,
  2. S. Poletto,
  3. M.-Z. Huang,
  4. A. Bruno,
  5. V. Vesterinen,
  6. O.-P. Saira,
  7. and L. DiCarlo
Quantum data is susceptible to decoherence induced by the environment and to errors in the hardware processing it. A future fault-tolerant quantum computer will use quantum error correction
(QEC) to actively protect against both. In the smallest QEC codes, the information in one logical qubit is encoded in a two-dimensional subspace of a larger Hilbert space of multiple physical qubits. For each code, a set of non-demolition multi-qubit measurements, termed stabilizers, can discretize and signal physical qubit errors without collapsing the encoded information. Experimental demonstrations of QEC to date, using nuclear magnetic resonance, trapped ions, photons, superconducting qubits, and NV centers in diamond, have circumvented stabilizers at the cost of decoding at the end of a QEC cycle. This decoding leaves the quantum information vulnerable to physical qubit errors until re-encoding, violating a basic requirement for fault tolerance. Using a five-qubit superconducting processor, we realize the two parity measurements comprising the stabilizers of the three-qubit repetition code protecting one logical qubit from physical bit-flip errors. We construct these stabilizers as parallelized indirect measurements using ancillary qubits, and evidence their non-demolition character by generating three-qubit entanglement from superposition states. We demonstrate stabilizer-based quantum error detection (QED) by subjecting a logical qubit to coherent and incoherent bit-flip errors on its constituent physical qubits. While increased physical qubit coherence times and shorter QED blocks are required to actively safeguard quantum information, this demonstration is a critical step toward larger codes based on multiple parity measurements.