Tuning the inductance of Josephson junction arrays without SQUIDs

  1. Roman Kuzmin,
  2. Nitish Mehta,
  3. Nicholas Grabon,
  4. and Vladimir E. Manucharyan
It is customary to use arrays of superconducting quantum interference devices (SQUIDs) for implementing magnetic field-tunable inductors. Here, we demonstrate an equivalent tunability in a (SQUID-free) array of single Al/AlOx/Al Josephson tunnel junctions. With the proper choice of junction geometry, a perpendicularly applied magnetic field bends along the plane of the superconductor and focuses into the tunnel barrier region due to a demagnetization effect. Consequently, the Josephson inductance can be efficiently modulated by the Fraunhoffer-type supercurrent interference. The elimination of SQUIDs not only simplifies the device design and fabrication, but also facilitates a denser packing of junctions and, hence, a higher inductance per unit length. As an example, we demonstrate a transmission line, the wave impedance of which is field-tuned in the range of 4−8 kΩ, centered around the important value of the resistance quantum h/(2e)2≈6.5 kΩ.

leave comment