Thermal spectrometer for superconducting circuits

  1. Christoforus Dimas Satrya,
  2. Yu-Cheng Chang,
  3. Rishabh Upadhyay,
  4. Ilari K. Makinen,
  5. Joonas T. Peltonen,
  6. Bayan Karimi,
  7. and Jukka P. Pekola
Superconducting circuits provide a versatile and controllable platform for studies of fundamental quantum phenomena as well as for quantum technology applications. A conventional technique to read out the state of a quantum circuit or to characterize its properties is based on rf measurement schemes involving costly and complex instrumentation. Here we demonstrate a simple dc measurement of a thermal spectrometer to investigate properties of a superconducting circuit, in this proof-of-concept experiment a coplanar waveguide resonator. A fraction of the microwave photons in the resonator is absorbed by an on-chip bolometer, resulting in a measurable temperature rise. By monitoring the dc signal of the thermometer due to this process, we are able to determine the resonance frequency and the lineshape (quality factor) of the resonator. The demonstrated scheme, which is a simple dc measurement, has a wide band up to 200 GHz, well exceeding that of the typical rf spectrometer. Moreover, the thermal measurement yields a highly frequency independent reference level of the Lorentzian absorption signal, unlike the conventional rf measurement. In the low power regime, the measurement is fully calibration-free. Our technique thus offers an alternative spectrometer for quantum circuits, which is in many ways superior with respect to conventional methods.

leave comment