Radiatively-cooled quantum microwave amplifiers
Superconducting microwave amplifiers are essential for sensitive signal readout in superconducting quantum processors. Typically based on Josephson Junctions, these amplifiers require operation at milli-Kelvin temperatures to achieve quantum-limited performance. Here we demonstrate a quantum microwave amplifier that employs radiative cooling to operate at elevated temperatures. This kinetic-inductance-based parametric amplifier, patterned from a single layer of high-Tc NbN thin film\cmt{in the form of a nanobridge}, maintains a high gain and meanwhile enables low added noise of 1.3 quanta when operated at 1.5 Kelvin. Remarkably, this represents only a 0.2 quanta increase compared to the performance at a base temperature of 0.1 Kelvin. By uplifting the parametric amplifiers from the mixing chamber without compromising readout efficiency, this work represents an important step for realizing scalable microwave quantum technologies.