Quantum Heating of a nonlinear resonator probed by a superconducting qubit
We measure the quantum fluctuations of a pumped nonlinear resonator, using a
superconducting artificial atom as an in-situ probe. The qubit excitation
spectrum gives access to the frequency and temperature of the intracavity field
fluctuations. These are found to be in agreement with theoretical predictions;
in particular we experimentally observe the phenomenon of quantum heating.