Period multiplication in a parametrically driven superconducting resonator
We report on the experimental observation of period multiplication in parametrically driven tunable superconducting resonators. We modulate the magnetic flux through a superconducting quantum interference device, attached to a quarter-wavelength resonator, with frequencies nω close to multiples, n=2,3,4,5, of the resonator fundamental mode and observe intense output radiation at ω. The output field manifests n-fold degeneracy with respect to the phase, the n states are phase shifted by 2π/n with respect to each other. Our demonstration verifies the theoretical prediction by Guo et al. in PRL 111, 205303 (2013), and paves the way for engineering complex macroscopic quantum cat states with microwave photons.