Performance of Superconducting Resonators Suspended on SiN Membranes

  1. Trevor Chistolini,
  2. Kyunghoon Lee,
  3. Archan Banerjee,
  4. Mohammed Alghadeer,
  5. Christian Jünger,
  6. M. Virginia P. Altoé,
  7. Chengyu Song,
  8. Sudi Chen,
  9. Feng Wang,
  10. David I. Santiago,
  11. and Irfan Siddiqi
Correlated errors in superconducting circuits due to nonequilibrium quasiparticles are a notable concern in efforts to achieve fault tolerant quantum computing. The propagation of quasiparticles causing these correlated errors can potentially be mediated by phonons in the substrate. Therefore, methods that decouple devices from the substrate are possible solutions, such as isolating devices atop SiN membranes. In this work, we validate the compatibility of SiN membrane technology with high quality superconducting circuits, adding the technique to the community’s fabrication toolbox. We do so by fabricating superconducting coplanar waveguide resonators entirely atop a thin (∼110 nm) SiN layer, where the bulk Si originally supporting it has been etched away, achieving a suspended membrane where the shortest length to its thickness yields an aspect ratio of approximately 7.4×103. We compare these membrane resonators to on-substrate resonators on the same chip, finding similar internal quality factors ∼105 at single photon levels. Furthermore, we confirm that these membranes do not adversely affect the resonator thermalization rate. With these important benchmarks validated, this technique can be extended to qubits.

leave comment