Model-based Optimization of Superconducting Qubit Readout

  1. Andreas Bengtsson,
  2. Alex Opremcak,
  3. Mostafa Khezri,
  4. Daniel Sank,
  5. Alexandre Bourassa,
  6. Kevin J. Satzinger,
  7. Sabrina Hong,
  8. Catherine Erickson,
  9. Brian J. Lester,
  10. Kevin C. Miao,
  11. Alexander N. Korotkov,
  12. Julian Kelly,
  13. Zijun Chen,
  14. and Paul V. Klimov
Measurement is an essential component of quantum algorithms, and for superconducting qubits it is often the most error prone. Here, we demonstrate model-based readout optimization achieving low measurement errors while avoiding detrimental side-effects. For simultaneous and mid-circuit measurements across 17 qubits, we observe 1.5% error per qubit with a 500ns end-to-end duration and minimal excess reset error from residual resonator photons. We also suppress measurement-induced state transitions achieving a leakage rate limited by natural heating. This technique can scale to hundreds of qubits and be used to enhance the performance of error-correcting codes and near-term applications.

leave comment