Fast microwave beam splitters from superconducting resonators
Coupled superconducting transmission line resonators have applications in
quantum information processing and fundamental quantum mechanics. A particular
example is the realization of fast beam splitters, which however is hampered by
two-mode squeezer terms. Here, we experimentally study superconducting
microstrip resonators which are coupled over one third of their length. By
varying the position of this coupling region we can tune the strength of the
two-mode squeezer coupling from 2.4% to 12.9% of the resonance frequency of
5.44GHz. Nevertheless, the beam splitter coupling rate for maximally suppressed
two-mode squeezing is 810MHz, enabling the construction of a fast and pure beam
splitter.