Anneal-path correction in flux qubits

  1. Mostafa Khezri,
  2. Jeffrey A. Grover,
  3. James I. Basham,
  4. Steven M. Disseler,
  5. Huo Chen,
  6. Sergey Novikov,
  7. Kenneth M. Zick,
  8. and Daniel A. Lidar
Quantum annealers require accurate control and optimized operation schemes to reduce noise levels, in order to eventually demonstrate a computational advantage over classical algorithms. We study a high coherence four-junction capacitively shunted flux qubit (CSFQ), using dispersive measurements to extract system parameters and model the device. We confirm the multi-level structure of the circuit model of our CSFQ by annealing it through small spectral gaps and observing quantum signatures of energy level crossings. Josephson junction asymmetry inherent to the device causes a deleterious nonlinear cross-talk when annealing the qubit. We implement a nonlinear annealing path to correct the asymmetry in-situ, resulting in a 50% improvement in the qubit performance. Our results demonstrate a low-level quantum control scheme which enhances the success probability of a quantum annealer.

leave comment