I am going to post here all newly submitted articles on the arXiv related to superconducting circuits. If your article has been accidentally forgotten, feel free to contact me
27
Okt
2022
An integrated microwave-to-optics interface for scalable quantum computing
Microwave-to-optics transduction is emerging as a vital technology for scaling quantum computers and quantum networks. To establish useful entanglement links between qubit processing
units, several key conditions have to be simultaneously met: the transducer must add less than a single quantum of input referred noise and operate with high-efficiency, as well as large bandwidth and high repetition rate. Here we present a new design for an integrated transducer based on a planar superconducting resonator coupled to a silicon photonic cavity through a mechanical oscillator made of lithium niobate on silicon. We experimentally demonstrate its unique performance and potential for simultaneously realizing all of the above conditions, measuring added noise that is limited to a few photons, transduction efficiencies as high as 0.9%, with a bandwidth of 14.8 MHz and a repetition rate of up to 100 kHz. Our device couples directly to a 50-Ohm transmission line and can easily be scaled to a large number of transducers on a single chip, paving the way for distributed quantum computing.
Broadband SNAIL parametric amplifier with microstrip impedance transformer
Josephson parametric amplifiers have emerged as a promising platform for quantum information processing and squeezed quantum states generation. Travelling wave and impedance-matched
parametric amplifiers provide broad bandwidth for high-fidelity single-shot readout of multiple qubit superconducting circuits. Here, we present a quantum-limited 3-wave-mixing parametric amplifier based on superconducting nonlinear asymmetric inductive elements (SNAILs), whose useful bandwidth is enhanced with an on-chip two-section impedance-matching circuit based on microstrip transmission lines. The amplifier dynamic range is increased using an array of sixty-seven SNAILs with 268 Josephson junctions, forming a nonlinear quarter-wave resonator. Operating in a current-pumped mode, we experimentally demonstrate an average gain of 17dB across 300MHz bandwidth, along with an average saturation power of −100dBm, which can go as high as −97dBm with quantum-limited noise performance. Moreover, the amplifier can be fabricated using a simple technology with just a one e-beam lithography step. Its central frequency is tuned over a several hundred megahertz, which in turn broadens the effective operational bandwidth to around 1.5GHz.
Improving Josephson junction reproducibility for superconducting quantum circuits: junction area fluctuation
Josephson superconducting qubits and parametric amplifiers are prominent examples of superconducting quantum circuits that have shown rapid progress in recent years. With the growing
complexity of such devices, the requirements for reproducibility of their electrical properties across a chip have become stricter. Thus, the critical current Ic variation of the Josephson junction, as the most important electrical parameter, needs to be minimized. Critical current, in turn, is related to normal-state resistance the Ambegaokar-Baratoff formula, which can be measured at room temperature. Here, we focus on the dominant source of Josephson junction critical current non-uniformity junction area variation. We optimized Josephson junctions fabrication process and demonstrate resistance variation of 9.8−4.4% and 4.8−2.3% across 22×22 mm2 and 5×10 mm2 chip areas, respectively. For a wide range of junction areas from 0.008 μm2 to 0.12 μm2 we ensure a small linewidth standard deviation of 4 nm measured over 4500 junctions with linear dimensions from 80 to 680 nm. The developed process was tested on superconducting highly coherent transmon qubits (T1>100μs) and a nonlinear asymmetric inductive element parametric amplifier.
26
Okt
2022
Theory of strong down-conversion in multi-mode cavity and circuit QED
We revisit the superstrong coupling regime of multi-mode cavity quantum electrodynamics (QED), defined to occur when the frequency of vacuum Rabi oscillations between the qubit and
the nearest cavity mode exceeds the cavity’s free spectral range. A novel prediction is made that the cavity’s linear spectrum, measured in the vanishing power limit, can acquire an intricate fine structure associated with the qubit-induced cascades of coherent single-photon down-conversion processes. This many-body effect is hard to capture by a brute-force numerics and it is sensitive to the light-matter coupling parameters both in the infra-red and the ultra-violet limits. We focused at the example case of a superconducting fluxonium qubit coupled to a long transmission line section. The conversion rate in such a circuit QED setup can readily exceed a few MHz, which is plenty to overcome the usual decoherence processes. Analytical calculations were made possible by an unconventional gauge choice, in which the qubit circuit interacts with radiation via the flux/charge variable in the low-/high-frequency limits, respectively. Our prediction of the fine spectral structure lays the foundation for the „strong down-conversion“ regime in quantum optics, in which a single photon excited in a non-linear medium spontaneously down-converts faster than it is absorbed.
25
Okt
2022
Emergent macroscopic bistability induced by a single superconducting qubit
The photon blockade breakdown in a continuously driven cavity QED system has been proposed as a prime example for a first-order driven-dissipative quantum phase transition. But the
predicted scaling from a microscopic system – dominated by quantum fluctuations – to a macroscopic one – characterized by stable phases – and the associated exponents and phase diagram have not been observed so far. In this work we couple a single transmon qubit with a fixed coupling strength g to an in-situ bandwidth κ tuneable superconducting cavity to controllably approach this thermodynamic limit. Even though the system remains microscopic, we observe its behavior to become more and more macroscopic as a function of g/κ. For the highest realized g/κ≈287 the system switches with a characteristic dwell time as high as 6 seconds between a bright coherent state with ≈8×103 intra-cavity photons and the vacuum state with equal probability. This exceeds the microscopic time scales by six orders of magnitude and approaches the near perfect hysteresis expected between two macroscopic attractors in the thermodynamic limit. These findings and interpretation are qualitatively supported by semi-classical theory and large-scale Quantum-Jump Monte Carlo simulations. Besides shedding more light on driven-dissipative physics in the limit of strong light-matter coupling, this system might also find applications in quantum sensing and metrology.
23
Okt
2022
A microwave scattering spectral method to detect the nanomechanical vibrations embedded in a superconducting qubit
Nanomechanical resonators (NMRs), as the quantum mechanical sensing probers, have played the important roles for various high-precision quantum measurements. Differing from the previous
emission spectral probes (i.e., the NMR modified the atomic emission), in this paper we propose an alternative approach, i.e., by probing the scattering spectra of the quantum mechanical prober coupled to the driving microwaves, to characterize the physical features of the NMR embedded in a rf-SQUID based superconducting qubit. It is shown that, from the observed specifical frequency points in the spectra, i.e., either the dips or the peaks, the vibrational features (i.e., they are classical vibration or quantum mechanical one) and the physical parameters (typically such as the vibrational frequency and displacements) of the NMR can be determined effectively. The proposal is feasible with the current technique and should be useful to design the desired NMRs for various quantum metrological applications.
22
Okt
2022
Coherent optical control of a superconducting microwave cavity via electro-optical dynamical back-action
Recent quantum technology advances have established precise quantum control of various microscopic systems involving optical, microwave, spin, and mechanical degrees of freedom. It
is a timely challenge to realize hybrid quantum devices that leverage the full potential of each component. Interfaces based on cryogenic cavity electro-optic systems are particularly promising, due to the direct interaction between microwave and optical fields in the quantum regime. However, low coupling rates and excess back-action from the pump laser have precluded quantum optical control of superconducting circuits. Here we report the coherent control of a microwave cavity mode using laser light in a multimode device at millikelvin temperature with near unity cooperativity, as manifested by the observation of electro-optically induced transparency and absorption due to the electro-optical dynamical back-action. We show that both the stationary and instantaneous pulsed response of the microwave and optical modes comply with the coherent electro-optical interaction and reveal only minuscule amount of excess back-action with an unanticipated time delay. Our demonstration represents a key step to attain full quantum control of microwave circuits using laser light, with possible applications ranging from optical quantum non-demolition measurements of microwave fields beyond the standard quantum limit, optical microwave ground state cooling and squeezing, to quantum transduction, entanglement generation and hybrid quantum networks.
21
Okt
2022
Tuning the inductance of Josephson junction arrays without SQUIDs
It is customary to use arrays of superconducting quantum interference devices (SQUIDs) for implementing magnetic field-tunable inductors. Here, we demonstrate an equivalent tunability
in a (SQUID-free) array of single Al/AlOx/Al Josephson tunnel junctions. With the proper choice of junction geometry, a perpendicularly applied magnetic field bends along the plane of the superconductor and focuses into the tunnel barrier region due to a demagnetization effect. Consequently, the Josephson inductance can be efficiently modulated by the Fraunhoffer-type supercurrent interference. The elimination of SQUIDs not only simplifies the device design and fabrication, but also facilitates a denser packing of junctions and, hence, a higher inductance per unit length. As an example, we demonstrate a transmission line, the wave impedance of which is field-tuned in the range of 4−8 kΩ, centered around the important value of the resistance quantum h/(2e)2≈6.5 kΩ.
19
Okt
2022
Scaling Superconducting Quantum Computers with Chiplet Architectures
Fixed-frequency transmon quantum computers (QCs) have advanced in coherence times, addressability, and gate fidelities. Unfortunately, these devices are restricted by the number of
on-chip qubits, capping processing power and slowing progress toward fault-tolerance. Although emerging transmon devices feature over 100 qubits, building QCs large enough for meaningful demonstrations of quantum advantage requires overcoming many design challenges. For example, today’s transmon qubits suffer from significant variation due to limited precision in fabrication. As a result, barring significant improvements in current fabrication techniques, scaling QCs by building ever larger individual chips with more qubits is hampered by device variation. Severe device variation that degrades QC performance is referred to as a defect. Here, we focus on a specific defect known as a frequency collision.
When transmon frequencies collide, their difference falls within a range that limits two-qubit gate fidelity. Frequency collisions occur with greater probability on larger QCs, causing collision-free yields to decline as the number of on-chip qubits increases. As a solution, we propose exploiting the higher yields associated with smaller QCs by integrating quantum chiplets within quantum multi-chip modules (MCMs). Yield, gate performance, and application-based analysis show the feasibility of QC scaling through modularity.
18
Okt
2022
Resolving Fock states near the Kerr-free point of a superconducting resonator
We have designed a tunable nonlinear resonator terminated by a SNAIL (Superconducting Nonlinear Asymmetric Inductive eLement). Such a device possesses a sweet spot in which the external
magnetic flux allows to suppress the Kerr interaction. We have excited photons near this Kerr-free point and characterized the device using a transmon qubit. The excitation spectrum of the qubit allows to observe photon-number-dependent frequency shifts about nine times larger than the qubit linewidth. Our study demonstrates a compact integrated platform for continuous-variable quantum processing that combines large couplings, considerable relaxation times and excellent control over the photon mode structure in the microwave domain.