I am going to post here all newly submitted articles on the arXiv related to superconducting circuits. If your article has been accidentally forgotten, feel free to contact me
10
Sep
2024
Deterministic generation of a 20-qubit two-dimensional photonic cluster state
Multidimensional cluster states are a key resource for robust quantum communication, measurement-based quantum computing and quantum metrology. Here, we present a device capable of
emitting large-scale entangled microwave photonic states in a two dimensional ladder structure. The device consists of a pair of coupled superconducting transmon qubits which are each tuneably coupled to a common output waveguide. This architecture permits entanglement between each transmon and a deterministically emitted photonic qubit. By interleaving two-qubit gates with controlled photon emission, we generate 2 x n grids of time- and frequency-multiplexed cluster states of itinerant microwave photons. We measure a signature of localizable entanglement across up to 20 photonic qubits. We expect the device architecture to be capable of generating a wide range of other tensor network states such as tree graph states, repeater states or the ground state of the toric code, and to be readily scalable to generate larger and higher dimensional states.
09
Sep
2024
Tantalum thin films sputtered on silicon and on different seed layers: material characterization and coplanar waveguide resonator performance
Superconducting qubits are a promising platform for large-scale quantum computing. Besides the Josephson junction, most parts of a superconducting qubit are made of planar, patterned
superconducting thin films. In the past, most qubit architectures have relied on niobium (Nb) as the material of choice for the superconducting layer. However, there is also a variety of alternative materials with potentially less losses, which may thereby result in increased qubit performance. One such material is tantalum (Ta), for which high-performance qubit components have already been demonstrated. In this study, we report the sputter-deposition of Ta thin films directly on heated and unheated silicon (Si) substrates as well as onto different, nanometer-thin seed layers from tantalum nitride (TaN), titanium nitride (TiN) or aluminum nitride (AlN) that were deposited first. The thin films are characterized in terms of surface morphology, crystal structure, phase composition, critical temperature, residual resistance ratio (RRR) and RF-performance. We obtain thin films indicative of pure alpha-Ta for high temperature (600°C) sputtering directly on silicon and for Ta deposited on TaN or TiN seed layers. Coplanar waveguide (CPW) resonator measurements show that the Ta deposited directly on the heated silicon substrate performs best with internal quality factors Qi reaching 1 x 106 in the single-photon regime, measured at T=100 mK.
Transmon qubit modeling and characterization for Dark Matter search
This study presents the design, simulation, and experimental characterization of a superconducting transmon qubit circuit prototype for potential applications in dark matter detection
experiments. We describe a planar circuit design featuring two non-interacting transmon qubits, one with fixed frequency and the other flux tunable. Finite-element simulations were employed to extract key Hamiltonian parameters and optimize component geometries. The qubit was fabricated and then characterized at 20 mK, allowing for a comparison between simulated and measured qubit parameters. Good agreement was found for transition frequencies and anharmonicities (within 1\% and 10\% respectively) while coupling strengths exhibited larger discrepancies (30\%). We discuss potential causes for measured coherence times falling below expectations (T1∼1-2 \textmu s) and propose strategies for future design improvements. Notably, we demonstrate the application of a hybrid 3D-2D simulation approach for energy participation ratio evaluation, yielding a more accurate estimation of dielectric losses. This work represents an important first step in developing planar Quantum Non-Demolition (QND) single-photon counters for dark matter searches, particularly for axion and dark photon detection schemes.
05
Sep
2024
Accelerating multipartite entanglement generation in non-Hermitian superconducting qubits
Open quantum systems are susceptible to losses in information, energy, and particles due to their surrounding environment. One novel strategy to mitigate these losses is to transform
them into advantages for quantum technologies through tailored non-Hermitian quantum systems. In this work, we theoretically propose a fast generation of multipartite entanglement in non-Hermitian qubits. Our findings reveal that weakly coupled non-Hermitian qubits can accelerate multiparty entanglement generation by thousands of times compared to Hermitian qubits, in particular when approaching the 2n-th order exceptional points of n qubits in the − symmetric regime. Furthermore, we show that Hermitian qubits can generate GHZ states with a high fidelity more than 0.9995 in a timescale comparable to that of non-Hermitian qubits, but at the expense of intense driving and large coupling constant. Our approach is scalable to a large number of qubits, presenting a promising pathway for advancing quantum technologies through the non-Hermiticity and higher-order exceptional points in many-body quantum systems.
04
Sep
2024
Thermometry Based on a Superconducting Qubit
We report temperature measurements using a transmon qubit by detecting the population of the first three levels of it, after employing a sequence of π-pulses and performing projective
dispersive readout. We measure the effective temperature of the qubit and characterize its relaxation and coherence times τ1,2 for three devices in the temperature range 20-300 mK. Signal-to-noise (SNR) ratio of the temperature measurement depends strongly on τ1, which drops at higher temperatures due to quasiparticle excitations, adversely affecting the measurements and setting an upper bound of the dynamic temperature range of the thermometer. The measurement relies on coherent dynamics of the qubit during the π-pulses. The effective qubit temperature follows closely that of the cryostat in the range 100-250 mK. We present a numerical model of the qubit population distribution and compare it favorably with the experimental results.
Blochnium-Based Josephson Junction Parametric Amplifiers: Superior Tunability and Linearity
The weak quantum signal amplification is an essential task in quantum computing. In this study, a recently introduced structure of Josephson junctions array called Blochnium (N series
Quarton structure) is utilized as a parametric amplifier. We begin by theoretical deriving the system’s Lagrangian, quantum Hamiltonian, and then analyze the dynamics using the quantum Langevin equation. By transforming these equations into the Fourier domain and employing the input-output formalism, leading metric indicators of the parametric amplifier become calculated. The new proposed design offers significant advantages over traditional designs due to its ability to manipulate nonlinearity. This premier feature enhances the compression point (P1dB) of the amplifier dramatically, and also provides its tunability across a broad band. The enhanced linearity, essential for quantum applications, is achieved through effective nonlinearity management, which is theoretically derived. Also, the ability to sweep the C-band without significant spectral overlap is crucial for frequency multiplexing in scalable quantum systems. Simulation results show that Blochnium parametric amplifiers can reach to a signal gain around 25 dB with a compression point better than of -92 dBm. Therefore, our proposed parametric amplifier, with its superior degree of freedom, surpasses traditional designs like arrays of Josephson junctions, making it a highly promising candidate for advanced quantum computing applications.
30
Aug
2024
Modeling flux tunability in Josephson Traveling Wave Parametric Amplifiers with an open-source frequency-domain simulator
Josephson Traveling Wave Parametric Amplifiers (JTWPAs) are integral parts of many experiments carried out in quantum technologies. Being composed of hundreds of Josephson junction-based
unit cells, such devices exhibit complex nonlinear behavior that typically cannot be fully explained with simple analytical models, thus necessitating the use of numerical simulators. A very useful characteristic of JTWPAs is the possibility of being biased by an external magnetic flux, allowing insitu control of the nonlinearity. It is therefore very desirable for numerical simulators to support this feature. Open-source numerical tools that allow to model JTWPA flux biasing, such as WRSPICE or PSCAN2, are based on time-domain approaches,which typically require long simulation times to get accurate results. In this work, we model the gain performance in a prototypical flux-tunable JTWPA by using JosephsonCircuits.jl,a recently developed frequency-domain open-source numerical simulator, which has the benefit of simulation times about 10,000 faster than time-domain methods. By comparing the numerical and experimental results, we validate this approach for modeling the flux dependent behavior of JTWPAs.
Nonequilibrium regimes for quasiparticles in superconducting qubits
Qubits with gap asymmetry larger than their transition energy are less susceptible to quasiparticle decoherence as the quasiparticles are mostly trapped in the low-gap side of the junction.
Because of this trapping, the gap asymmetry can contribute to maintaining the quasiparticles out of equilibrium. Here we address the temperature evolution of the quasiparticle densities in the two sides of the junction. We show that four qualitatively different regimes are possible with increasing temperature: i) nonequilibrium, ii) local quasiequilibrium, iii) global quasiequilibrium, and iv) full equilibrium. We identify shortcomings in assuming global quasiequilibrium when interpreting experimental data, highlighting how measurements in the presence of magnetic field can aid the accurate determination of the junction parameters, and hence the identification of the nonequilibrium regimes.
29
Aug
2024
Circuit QED Emission Spectra in the Ultrastrong Coupling Regime: How They Differ from Cavity QED
Cavity quantum electrodynamics (QED) studies the interaction between resonator-confined radiation and natural atoms or other formally equivalent quantum excitations, under conditions
where the quantum nature of photons is relevant. Phenomena studied in cavity QED can also be explored using superconducting artificial atoms and microwave photons in superconducting resonators. These circuit QED systems offer the possibility to reach the ultrastrong coupling regime with individual artificial atoms, unlike their natural counterparts. In this regime, the light-matter coupling rate reaches a considerable fraction of the bare resonance frequencies in the system. Here, we provide a careful analysis of the emission spectra in circuit QED systems consisting of a flux qubit interacting with an LC resonator. Despite these systems can be described by the quantum Rabi model, as the corresponding cavity QED ones, we find distinctive features, depending on how the system is coupled with the output port, which become evident in the ultrastrong coupling regime.
Josephson Traveling Wave Parametric Amplifiers with Plasma oscillation phase-matching
High gain and large bandwidth of traveling-wave parametric amplifier exploiting the nonlinearity of Josephson Junctions can be achieved by fulfilling the so-called phase-matching condition.
This condition is usually addressed by placing resonant structures along the waveguide or by periodic modulations of its parameters, creating gaps in the waveguide’s dispersion. Here, we propose to employ the Josephson junctions, which constitute the centerline of the amplifier, as resonant elements for phase matching. By numerical simulations in JoSIM (and WRspice) software, we show that Josephson plasma oscillations can be utilized to create wavevector mismatch sufficient for phase matching as well as to prevent the conversion of the pump energy to higher harmonics. The proposed TWPA design has a gain of 15 dB and a 3.5 GHz bandwidth, which is comparable to the state-of-the-art TWPAs.