I am going to post here all newly submitted articles on the arXiv related to superconducting circuits. If your article has been accidentally forgotten, feel free to contact me
20
Jun
2024
Stabilization of Kerr-cat qubits with quantum circuit refrigerator
A periodically-driven superconducting nonlinear resonator can implement a Kerr-cat qubit, which provides a promising route to a quantum computer with a long lifetime. However, the system
is vulnerable to pure dephasing, which causes unwanted excitations outside the qubit subspace. Therefore, we require a refrigeration technology which confines the system in the qubit subspace. We theoretically study on-chip refrigeration for Kerr-cat qubits based on photon-assisted electron tunneling at tunneling junctions, called quantum circuit refrigerator (QCR). Rates of QCR-induced deexcitations of the system can be changed by more than four orders of magnitude by tuning a bias voltage across the tunneling junctions. Unwanted QCR-induced bit flips are greatly suppressed due to quantum interference in the tunneling process, and thus the long lifetime is preserved. The QCR can serve as a tunable dissipation source which stabilizes Kerr-cat qubits.
A mid-circuit erasure check on a dual-rail cavity qubit using the joint-photon number-splitting regime of circuit QED
Quantum control of a linear oscillator using a static dispersive coupling to a nonlinear ancilla underpins a wide variety of experiments in circuit QED. Extending this control to more
than one oscillator while minimizing the required connectivity to the ancilla would enable hardware-efficient multi-mode entanglement and measurements. We show that the spectrum of an ancilla statically coupled to a single mode can be made to depend on the joint photon number in two modes by applying a strong parametric beamsplitter coupling between them. This `joint-photon number-splitting‘ regime extends single-oscillator techniques to two-oscillator control, which we use to realize a hardware-efficient erasure check for a dual-rail qubit encoded in two superconducting cavities. By leveraging the beamsplitter coupling already required for single-qubit gates, this scheme permits minimal connectivity between circuit elements. Furthermore, the flexibility to choose the pulse shape allows us to limit the susceptibility to different error channels. We use this scheme to detect leakage errors with a missed erasure fraction of (9.0±0.5)×10−4, while incurring an erasure rate of 2.92±0.01% and a Pauli error rate of 0.31±0.01%, both of which are dominated by cavity errors.
18
Jun
2024
Simulating nonlinear optical processes on a superconducting quantum device
Simulating plasma physics on quantum computers is difficult, because most problems of interest are nonlinear, but quantum computers are not naturally suitable for nonlinear operations.
In weakly nonlinear regimes, plasma problems can be modeled as wave-wave interactions. In this paper, we develop a quantization approach to convert nonlinear wave-wave interaction problems to Hamiltonian simulation problems. We demonstrate our approach using two qubits on a superconducting device. Unlike a photonic device, a superconducting device does not naturally have the desired interactions in its native Hamiltonian. Nevertheless, Hamiltonian simulations can still be performed by decomposing required unitary operations into native gates. To improve experimental results, we employ a range of error mitigation techniques. Apart from readout error mitigation, we use randomized compilation to transform undiagnosed coherent errors into well-behaved stochastic Pauli channels. Moreover, to compensate for stochastic noise, we rescale exponentially decaying probability amplitudes using rates measured from cycle benchmarking. We carefully consider how different choices of product-formula algorithms affect the overall error and show how a trade-off can be made to best utilize limited quantum resources. This study provides a point example of how plasma problems may be solved on near-term quantum computing platforms.
17
Jun
2024
Measurement of Many-Body Quantum Correlations in Superconducting Circuits
Recent advances in superconducting circuit technology have made the fabrication of large, customizable circuits routine. This has led to their application to areas beyond quantum information
and, in particular, to their use as quantum simulators. A key challenge in this effort has been the identification of the quantum states realized by these circuits. Here, we propose a probe circuit capable of reading out many-body correlations in an analog quantum simulator. Our measurement scheme, designed for many-photon states, exploits the non-linearity of the Josephson junction to measure two-point (and potentially higher-order) correlation functions of the superconducting phase operator. We demonstrate the capabilities of this design in the context of an LC-ladder with a quantum impurity. The proposed probe allows for the measurement of inherently quantum correlations, such as squeezing, and has the potential to significantly expand the scope of analog quantum simulations using superconducting circuits.
15
Jun
2024
Noise-induced quantum synchronization and maximally entangled mixed states in superconducting circuits
Random fluctuations can lead to cooperative effects in complex systems. We here report the experimental observation of noise-induced quantum synchronization in a chain of superconducting
transmon qubits with nearest-neighbor interactions. The application of Gaussian white noise to a single site leads to synchronous oscillations in the entire chain. We show that the two synchronized end qubits are entangled, with nonzero concurrence, and that they belong to a class of generalized Bell states known as maximally entangled mixed states, whose entanglement cannot be increased by any global unitary. We further demonstrate the stability against frequency detuning of both synchronization and entanglement by determining the corresponding generalized Arnold tongue diagrams. Our results highlight the constructive influence of noise in a quantum many-body system and uncover the potential role of synchronization for mixed-state quantum information science.
14
Jun
2024
Integration of through-sapphire substrate machining with superconducting quantum processors
We demonstrate a sapphire machining process integrated with intermediate-scale quantum processors. The process allows through-substrate electrical connections, necessary for low-frequency
mode-mitigation, as well as signal-routing, which are vital as quantum computers scale in qubit number, and thus dimension. High-coherence qubits are required to build fault-tolerant quantum computers and so material choices are an important consideration when developing a qubit technology platform. Sapphire, as a low-loss dielectric substrate, has shown to support high-coherence qubits. In addition, recent advances in material choices such as tantalum and titanium-nitride, both deposited on a sapphire substrate, have demonstrated qubit lifetimes exceeding 0.3 ms. However, the lack of any process equivalent of deep-silicon etching to create through-substrate-vias in sapphire, or to inductively shunt large dies, has limited sapphire to small-scale processors, or necessitates the use of chiplet architecture. Here, we present a sapphire machining process that is compatible with high-coherence qubits. This technique immediately provides a means to scale QPUs with integrated mode-mitigation, and provides a route toward the development of through-sapphire-vias, both of which allow the advantages of sapphire to be leveraged as well as facilitating the use of sapphire-compatible materials for large-scale QPUs.
Magnetic Field Tolerant Superconducting Spiral Resonators for Circuit QED
We present spiral resonators of thin film niobium (Nb) that exhibit large geometric inductance, high critical magnetic fields and high single photon quality factors. These low loss
geometric inductors can be a compelling alternative to kinetic inductors to create high-impedance superconducting devices for applications that require magnetic fields. By varying the spiral pitch, we realize resonators with characteristic impedances ranging from 3.25-7.09 k{\Omega}. We measure the temperature and magnetic field dependent losses and find that the high-impedance resonators maintain an intrinsic quality factor above {\sim} 10^5 for parallel magnetic fields of up to 1 T. These properties make spiral Nb resonators a promising candidate for quantum devices that require circuit elements with high impedance and magnetic field resilience.
10
Jun
2024
Macroscopic quantum superpositions in superconducting circuits
A possible route to test whether macroscopic systems can acquire quantum features using superconducting circuits is here presented. It is shown that under general assumptions a classical
test current pulse of fixed energy and adjustable length acquires quantum features after interacting with the quantum vacuum of the photon field. Further, it is shown that the mere existence of vacuum fluctuations can lead to the breakdown of energy and momentum conservation, and as the length of the pulse grows with respect to the characteristic size of the quantum system, the test pulse undergoes quantum-to-classical transition. This model differs from previous ones for its simplicity and points towards a new way of creating correlated systems suitable for quantum-based technology.
08
Jun
2024
Field-Based Formalism for Calculating Multi-Qubit Exchange Coupling Rates for Transmon Qubits
Superconducting qubits are one of the most mature platforms for quantum computing, but significant performance improvements are still needed. To improve the engineering of these systems,
3D full-wave computational electromagnetics analyses are increasingly being used. Unfortunately, existing analysis approaches often rely on full-wave simulations using eigenmode solvers that are typically cumbersome, not robust, and computationally prohibitive if devices with more than a few qubits are to be analyzed. To improve the characterization of superconducting circuits while circumventing these drawbacks, this work begins the development of an alternative framework that we illustrate in the context of evaluating the qubit-qubit exchange coupling rate between transmon qubits. This is a key design parameter that determines the entanglement rate for fast multi-qubit gate performance and also affects decoherence sources like qubit crosstalk. Our modeling framework uses a field-based formalism in the context of macroscopic quantum electrodynamics, which we use to show that the qubit-qubit exchange coupling rate can be related to the electromagnetic dyadic Green’s function linking the qubits together. We further show how the quantity involving the dyadic Green’s function can be related to the impedance response of the system that can be efficiently computed with classical computational electromagnetics tools. We demonstrate the validity and efficacy of this approach by simulating four practical multi-qubit superconducting circuits and evaluating their qubit-qubit exchange coupling rates. We validate our results against a 3D numerical diagonalization method and against experimental data where available. We also demonstrate the impact of the qubit-qubit exchange coupling rate on qubit crosstalk by simulating a multi-coupler device and identifying operating points where the qubit crosstalk becomes zero.
07
Jun
2024
Dispersive Qubit Readout with Intrinsic Resonator Reset
A key challenge in quantum computing is speeding up measurement and initialization. Here, we experimentally demonstrate a dispersive measurement method for superconducting qubits that
simultaneously measures the qubit and returns the readout resonator to its initial state. The approach is based on universal analytical pulses and requires knowledge of the qubit and resonator parameters, but needs no direct optimization of the pulse shape, even when accounting for the nonlinearity of the system. Moreover, the method generalizes to measuring an arbitrary number of modes and states. For the qubit readout, we can drive the resonator to ∼102 photons and back to ∼10−3 photons in less than 3κ−1, while still achieving a T1-limited assignment error below 1\%. We also present universal pulse shapes and experimental results for qutrit readout.