Measurement-Induced State Transitions in a Superconducting Qubit: Within the Rotating Wave Approximation

  1. Mostafa Khezri,
  2. Alex Opremcak,
  3. Zijun Chen,
  4. Andreas Bengtsson,
  5. Theodore White,
  6. Ofer Naaman,
  7. Rajeev Acharya,
  8. Kyle Anderson,
  9. Markus Ansmann,
  10. Frank Arute,
  11. Kunal Arya,
  12. Abraham Asfaw,
  13. Joseph C Bardin,
  14. Alexandre Bourassa,
  15. Jenna Bovaird,
  16. Leon Brill,
  17. Bob B. Buckley,
  18. David A. Buell,
  19. Tim Burger,
  20. Brian Burkett,
  21. Nicholas Bushnell,
  22. Juan Campero,
  23. Ben Chiaro,
  24. Roberto Collins,
  25. Alexander L. Crook,
  26. Ben Curtin,
  27. Sean Demura,
  28. Andrew Dunsworth,
  29. Catherine Erickson,
  30. Reza Fatemi,
  31. Vinicius S. Ferreira,
  32. Leslie Flores-Burgos,
  33. Ebrahim Forati,
  34. Brooks Foxen,
  35. Gonzalo Garcia,
  36. William Giang,
  37. Marissa Giustina,
  38. Raja Gosula,
  39. Alejandro Grajales Dau,
  40. Michael C. Hamilton,
  41. Sean D. Harrington,
  42. Paula Heu,
  43. Jeremy Hilton,
  44. Markus R. Hoffmann,
  45. Sabrina Hong,
  46. Trent Huang,
  47. Ashley Huff,
  48. Justin Iveland,
  49. Evan Jeffrey,
  50. Julian Kelly,
  51. Seon Kim,
  52. Paul V. Klimov,
  53. Fedor Kostritsa,
  54. John Mark Kreikebaum,
  55. David Landhuis,
  56. Pavel Laptev,
  57. Lily Laws,
  58. Kenny Lee,
  59. Brian J. Lester,
  60. Alexander T. Lill,
  61. Wayne Liu,
  62. Aditya Locharla,
  63. Erik Lucero,
  64. Steven Martin,
  65. Matt McEwen,
  66. Anthony Megrant,
  67. Xiao Mi,
  68. Kevin C. Miao,
  69. Shirin Montazeri,
  70. Alexis Morvan,
  71. Matthew Neeley,
  72. Charles Neill,
  73. Ani Nersisyan,
  74. Jiun How Ng,
  75. Anthony Nguyen,
  76. Murray Nguyen,
  77. Rebecca Potter,
  78. Chris Quintana,
  79. Charles Rocque,
  80. Pedram Roushan,
  81. Kannan Sankaragomathi,
  82. Kevin J. Satzinger,
  83. Christopher Schuster,
  84. Michael J. Shearn,
  85. Aaron Shorter,
  86. Vladimir Shvarts,
  87. Jindra Skruzny,
  88. W. Clarke Smith,
  89. George Sterling,
  90. Marco Szalay,
  91. Douglas Thor,
  92. Alfredo Torres,
  93. Bryan W. K. Woo,
  94. Z. Jamie Yao,
  95. Ping Yeh,
  96. Juhwan Yoo,
  97. Grayson Young,
  98. Ningfeng Zhu,
  99. Nicholas Zobrist,
  100. and Daniel Sank
Superconducting qubits typically use a dispersive readout scheme, where a resonator is coupled to a qubit such that its frequency is qubit-state dependent. Measurement is performed
by driving the resonator, where the transmitted resonator field yields information about the resonator frequency and thus the qubit state. Ideally, we could use arbitrarily strong resonator drives to achieve a target signal-to-noise ratio in the shortest possible time. However, experiments have shown that when the average resonator photon number exceeds a certain threshold, the qubit is excited out of its computational subspace, which we refer to as a measurement-induced state transition. These transitions degrade readout fidelity, and constitute leakage which precludes further operation of the qubit in, for example, error correction. Here we study these transitions using a transmon qubit by experimentally measuring their dependence on qubit frequency, average photon number, and qubit state, in the regime where the resonator frequency is lower than the qubit frequency. We observe signatures of resonant transitions between levels in the coupled qubit-resonator system that exhibit noisy behavior when measured repeatedly in time. We provide a semi-classical model of these transitions based on the rotating wave approximation and use it to predict the onset of state transitions in our experiments. Our results suggest the transmon is excited to levels near the top of its cosine potential following a state transition, where the charge dispersion of higher transmon levels explains the observed noisy behavior of state transitions. Moreover, occupation in these higher energy levels poses a major challenge for fast qubit reset.

Quantum electrodynamics in a topological waveguide

  1. Eunjong Kim,
  2. Xueyue Zhang,
  3. Vinicius S. Ferreira,
  4. Jash Banker,
  5. Joseph K. Iverson,
  6. Alp Sipahigil,
  7. Miguel Bello,
  8. Alejandro Gonzalez-Tudela,
  9. Mohammad Mirhosseini,
  10. and Oskar Painter
While designing the energy-momentum relation of photons is key to many linear, non-linear, and quantum optical phenomena, a new set of light-matter properties may be realized by employing
the topology of the photonic bath itself. In this work we investigate the properties of superconducting qubits coupled to a metamaterial waveguide based on a photonic analog of the Su-Schrieffer-Heeger model. We explore topologically-induced properties of qubits coupled to such a waveguide, ranging from the formation of directional qubit-photon bound states to topology-dependent cooperative radiation effects. Addition of qubits to this waveguide system also enables direct quantum control over topological edge states that form in finite waveguide systems, useful for instance in constructing a topologically protected quantum communication channel. More broadly, our work demonstrates the opportunity that topological waveguide-QED systems offer in the synthesis and study of many-body states with exotic long-range quantum correlations.

Collapse and Revival of an Artificial Atom Coupled to a Structured Photonic Reservoir

  1. Vinicius S. Ferreira,
  2. Jash Banker,
  3. Alp Sipahigil,
  4. Matthew H. Matheny,
  5. Andrew J. Keller,
  6. Eunjong Kim,
  7. Mohammad Mirhosseini,
  8. and Oskar Painter
A structured electromagnetic reservoir can result in novel dynamics of quantum emitters. In particular, the reservoir can be tailored to have a memory of past interactions with emitters,
in contrast to memory-less Markovian dynamics of typical open systems. In this Article, we investigate the non-Markovian dynamics of a superconducting qubit strongly coupled to a superconducting slow-light waveguide reservoir. Tuning the qubit into the spectral vicinity of the passband of this waveguide, we find non-exponential energy relaxation as well as substantial changes to the qubit emission rate. Further, upon addition of a reflective boundary to one end of the waveguide, we observe revivals in the qubit population on a timescale 30 times longer than the inverse of the qubit’s emission rate, corresponding to the round-trip travel time of an emitted photon. By tuning of the qubit-waveguide interaction strength, we probe a crossover between Markovian and non-Markovian qubit emission dynamics. These attributes allow for future studies of multi-qubit circuits coupled to structured reservoirs, in addition to constituting the necessary resources for generation of multiphoton highly entangled states.

Superconducting metamaterials for waveguide quantum electrodynamics

  1. Mohammad Mirhosseini,
  2. Eunjong Kim,
  3. Vinicius S. Ferreira,
  4. Mahmoud Kalaee,
  5. Alp Sipahigil,
  6. Andrew J. Keller,
  7. and Oskar Painter
The embedding of tunable quantum emitters in a photonic bandgap structure enables the control of dissipative and dispersive interactions between emitters and their photonic bath. Operation
in the transmission band, outside the gap, allows for studying waveguide quantum electrodynamics in the slow-light regime. Alternatively, tuning the emitter into the bandgap results in finite range emitter-emitter interactions via bound photonic states. Here we couple a transmon qubit to a superconducting metamaterial with a deep sub-wavelength lattice constant (λ/60). The metamaterial is formed by periodically loading a transmission line with compact, low loss, low disorder lumped element microwave resonators. We probe the coherent and dissipative dynamics of the system by measuring the Lamb shift and the change in the lifetime of the transmon qubit. Tuning the qubit frequency in the vicinity of a band-edge with a group index of ng=450, we observe an anomalous Lamb shift of 10 MHz accompanied by a 24-fold enhancement in the qubit lifetime. In addition, we demonstrate selective enhancement and inhibition of spontaneous emission of different transmon transitions, which provide simultaneous access to long-lived metastable qubit states and states strongly coupled to propagating waveguide modes.