Quantum electrodynamics in a topological waveguide

  1. Eunjong Kim,
  2. Xueyue Zhang,
  3. Vinicius S. Ferreira,
  4. Jash Banker,
  5. Joseph K. Iverson,
  6. Alp Sipahigil,
  7. Miguel Bello,
  8. Alejandro Gonzalez-Tudela,
  9. Mohammad Mirhosseini,
  10. and Oskar Painter
While designing the energy-momentum relation of photons is key to many linear, non-linear, and quantum optical phenomena, a new set of light-matter properties may be realized by employing the topology of the photonic bath itself. In this work we investigate the properties of superconducting qubits coupled to a metamaterial waveguide based on a photonic analog of the Su-Schrieffer-Heeger model. We explore topologically-induced properties of qubits coupled to such a waveguide, ranging from the formation of directional qubit-photon bound states to topology-dependent cooperative radiation effects. Addition of qubits to this waveguide system also enables direct quantum control over topological edge states that form in finite waveguide systems, useful for instance in constructing a topologically protected quantum communication channel. More broadly, our work demonstrates the opportunity that topological waveguide-QED systems offer in the synthesis and study of many-body states with exotic long-range quantum correlations.

leave comment