Fast high fidelity quantum non-demolition qubit readout via a non-perturbative cross-Kerr coupling

  1. R. Dassonneville,
  2. T. Ramos,
  3. V. Milchakov,
  4. L. Planat,
  5. É. Dumur,
  6. F. Foroughi,
  7. J. Puertas,
  8. S. Leger,
  9. K. Bharadwaj,
  10. J. Delaforce,
  11. K. Rafsanjani,
  12. C. Naud,
  13. W. Hasch-Guichard,
  14. J.J. García-Ripoll,
  15. N. Roch,
  16. and O. Buisson
Qubit readout is an indispensable element of any quantum information processor. In this work we propose an original coupling scheme between qubit and cavity mode based on a non-perturbative
cross-Kerr interaction. It leads to an alternative readout mechanism for superconducting qubits. This scheme, using the same experimental techniques as the perturbative cross-Kerr coupling (dispersive interaction), leads to an alternative readout mechanism for superconducting qubits. This new process, being non-perturbative, maximizes speed of qubit readout, single-shot fidelity and its quantum non-demolition (QND) behavior at the same time, while minimizing the effect of unwanted decay channels such as, for example, the Purcell effect. We observed 97.4 % single-shot readout fidelity for short 50 ns pulses. Using long measurement, we quantified the QND-ness to 99 %.

Quantum probe of an on-chip broadband interferometer for quantum microwave photonics

  1. P. Eder,
  2. T. Ramos,
  3. J. Goetz,
  4. M. Fischer,
  5. S. Pogorzalek,
  6. J. Puertas Martínez,
  7. E. P. Menzel,
  8. F. Loacker,
  9. E. Xie,
  10. J.J. Garcia-Ripoll,
  11. K. G. Fedorov,
  12. A. Marx,
  13. F. Deppe,
  14. and R. Gross
Quantum microwave photonics aims at generating, routing, and manipulating propagating quantum microwave fields in the spirit of optical photonics. To this end, the strong nonlinearities
of superconducting quantum circuits can be used to either improve or move beyond the implementation of concepts from the optical domain. In this context, the design of a well-controlled broadband environment for the superconducting quantum circuits is a central task. In this work, we place a superconducting transmon qubit in one arm of an on-chip Mach-Zehnder interferometer composed of two superconducting microwave beam splitters. By measuring its relaxation and dephasing rates we use the qubit as a sensitive spectrometer at the quantum level to probe the broadband electromagnetic environment. At high frequencies, this environment can be well described by an ensemble of harmonic oscillators coupled to the transmon qubit. At low frequencies, we find experimental evidence for colored quasi-static Gaussian noise with a high spectral weight, as it is typical for ensembles of two-level fluctuators. Our work paves the way towards possible applications of propagating microwave photons, such as emulating quantum impurity models or a novel architecture for quantum information processing.