Probing XY phase transitions in a Josephson junction array with tunable frustration

  1. R. Cosmic,
  2. K. Kawabata,
  3. Y. Ashida,
  4. H. Ikegami,
  5. S. Furukawa,
  6. P. Patil,
  7. J. M. Taylor,
  8. and Y. Nakamura
The seminal theoretical works of Berezinskii, Kosterlitz, and Thouless presented a new paradigm for phase transitions in condensed matter that are driven by topological excitations.
These transitions have been extensively studied in the context of two-dimensional XY models — coupled compasses — and have generated interest in the context of quantum simulation. Here, we use a circuit quantum-electrodynamics architecture to study the critical behavior of engineered XY models through their dynamical response. In particular, we examine not only the unfrustrated case but also the fully-frustrated case which leads to enhanced degeneracy associated with the spin rotational [U(1)] and discrete chiral (Z2) symmetries. The nature of the transition in the frustrated case has posed a challenge for theoretical studies while direct experimental probes remain elusive. Here we identify the transition temperatures for both the unfrustrated and fully-frustrated XY models by probing a Josephson junction array close to equilibrium using weak microwave excitations and measuring the temperature dependence of the effective damping obtained from the complex reflection coefficient. We argue that our probing technique is primarily sensitive to the dynamics of the U(1) part.

Circuit QED-based measurement of vortex lattice order in a Josephson junction array

  1. R. Cosmic,
  2. Hiroki Ikegami,
  3. Zhirong Lin,
  4. Kunihiro Inomata,
  5. Jacob M. Taylor,
  6. and Yasunobu Nakamura
Superconductivity provides a canonical example of a quantum phase of matter. When superconducting islands are connected by Josephson junctions in a lattice, the low temperature state
of the system can map to the celebrated XY model and its associated universality classes. This has been used to experimentally implement realizations of Mott insulator and Berezinskii–Kosterlitz–Thouless (BKT) transitions to vortex dynamics analogous to those in type-II superconductors. When an external magnetic field is added, the effective spins of the XY model become frustrated, leading to the formation of topological defects (vortices). Here we observe the many-body dynamics of such an array, including frustration, via its coupling to a superconducting microwave cavity. We take the design of the transmon qubit, but replace the single junction between two antenna pads with the complete array. This allows us to probe the system at 10 mK with minimal self-heating by using weak coherent states at the single (microwave) photon level to probe the resonance frequency of the cavity. We observe signatures of ordered vortex lattice at rational flux fillings of the array.

Implementation of pairwise longitudinal coupling in a three-qubit superconducting circuit

  1. Tanay Roy,
  2. Suman Kundu,
  3. Madhavi Chand,
  4. Sumeru Hazra,
  5. N. Nehra,
  6. R. Cosmic,
  7. A. Ranadive,
  8. Meghan P. Patankar,
  9. Kedar Damle,
  10. and R. Vijay
We present the „trimon“, a multi-mode superconducting circuit implementing three qubits with all-to-all longitudinal coupling. This always-on interaction enables simple
implementation of generalized controlled-NOT gates which form a universal set. Further, two of the three qubits are protected against Purcell decay while retaining measurability. We demonstrate high-fidelity state swapping operations between two qubits and characterize the coupling of all three qubits to a neighbouring transmon qubit. Our results offer a new paradigm for multi-qubit architecture with applications in quantum error correction, quantum simulations and quantum annealing.