Strong parametric dispersive shifts in a statically decoupled multi-qubit cavity QED system

  1. T. Noh,
  2. Z. Xiao,
  3. K. Cicak,
  4. X. Y. Jin,
  5. E. Doucet,
  6. J. Teufel,
  7. J. Aumentado,
  8. L. C. G. Govia,
  9. L. Ranzani,
  10. A. Kamal,
  11. and R. W. Simmonds
Cavity quantum electrodynamics (QED) with in-situ tunable interactions is important for developing novel systems for quantum simulation and computing. The ability to tune the dispersive
shifts of a cavity QED system provides more functionality for performing either quantum measurements or logical manipulations. Here, we couple two transmon qubits to a lumped-element cavity through a shared dc-SQUID. Our design balances the mutual capacitive and inductive circuit components so that both qubits are highly decoupled from the cavity, offering protection from decoherence processes. We show that by parametrically driving the SQUID with an oscillating flux it is possible to independently tune the interactions between either of the qubits and the cavity dynamically. The strength and detuning of this cavity QED interaction can be fully controlled through the choice of the parametric pump frequency and amplitude. As a practical demonstration, we perform pulsed parametric dispersive readout of both qubits while statically decoupled from the cavity. The dispersive frequency shifts of the cavity mode follow the expected magnitude and sign based on simple theory that is supported by a more thorough theoretical investigation. This parametric approach creates a new tunable cavity QED framework for developing quantum information systems with various future applications, such as entanglement and error correction via multi-qubit parity readout, state and entanglement stabilization, and parametric logical gates.

High-efficiency measurement of an artificial atom embedded in a parametric amplifier

  1. A. Eddins,
  2. J.M. Kreikebaum,
  3. D.M. Toyli,
  4. E.M. Levenson-Falk,
  5. A. Dove,
  6. W.P. Livingston,
  7. B.A. Levitan,
  8. L. C. G. Govia,
  9. A. A. Clerk,
  10. and I. Siddiqi
A crucial limit to measurement efficiencies of superconducting circuits comes from losses involved when coupling to an external quantum amplifier. Here, we realize a device circumventing
this problem by directly embedding a two-level artificial atom, comprised of a transmon qubit, within a flux-pumped Josephson parametric amplifier. Surprisingly, this configuration is able to enhance dispersive measurement without exposing the qubit to appreciable excess backaction. This is accomplished by engineering the circuit to permit high-power operation that reduces information loss to unmonitored channels associated with the amplification and squeezing of quantum noise. By mitigating the effects of off-chip losses downstream, the on-chip gain of this device produces end-to-end measurement efficiencies of up to 80 percent. Our theoretical model accurately describes the observed interplay of gain and measurement backaction, and delineates the parameter space for future improvement. The device is compatible with standard fabrication and measurement techniques, and thus provides a route for definitive investigations of fundamental quantum effects and quantum control protocols.

Dissipative stabilization of entangled cat states using a driven Bose-Hubbard dimer

  1. M. Mamaev,
  2. L. C. G. Govia,
  3. and A. A. Clerk
We analyze a modified Bose-Hubbard model, where two cavities having on-site Kerr interactions are subject to two-photon driving and correlated dissipation. We derive an exact solution
for the steady state of this interacting driven-dissipative system, and use it show that the system permits the preparation and stabilization of pure entangled non-Gaussian states, so-called entangled cat states. Unlike previous proposals for dissipative stabilization of such states, our approach requires only a linear coupling to a single engineered reservoir (as opposed to nonlinear couplings to two or more reservoirs). Our scheme is within the reach of state-of-the-art experiments in circuit QED.

Optimizing single microwave-photon detection: Input-Output theory

  1. M. Schöndorf,
  2. L. C. G. Govia,
  3. M. Vavilov,
  4. R. McDermott,
  5. and F.K. Wilhelm
High fidelity microwave photon counting is an important tool for various areas from background radiation analysis in astronomy to the implementation of circuit QED architectures for
the realization of a scalable quantum information processor. In this work we describe a microwave photon counter coupled to a semi-infinite transmission line. We employ input-output theory to examine a continuously driven transmission line as well as traveling photon wave packets. Using analytic and numerical methods, we calculate the conditions on the system parameters necessary to optimize measurement and achieve high detection efficiency.