Superconducting quantum information processing machines are predominantly based on microwave circuits with relatively low characteristic impedance, of about 100 Ohm, and small anharmonicity,which can limit their coherence and logic gate fidelity. A promising alternative are circuits based on so-called superinductors, with characteristic impedances exceeding the resistance quantum RQ=6.4 kΩ. However, previous implementations of superinductors, consisting of mesoscopic Josephson junction arrays, can introduce unintended nonlinearity or parasitic resonant modes in the qubit vicinity, degrading its coherence. Here we present a fluxonium qubit design using a granular aluminum (grAl) superinductor strip. Granular aluminum is a particularly attractive material, as it self-assembles into an effective junction array with a remarkably high kinetic inductance, and its fabrication can be in-situ integrated with standard aluminum circuit processing. The measured qubit coherence time TR2 up to 30 μs illustrates the potential of grAl for applications ranging from protected qubit designs to quantum limited amplifiers and detectors.

Superconducting high kinetic inductance elements constitute a valuable resource for quantum circuit design and millimeter-wave detection. Granular aluminum (GrAl) in the superconductingregime is a particularly interesting material since it has already shown a kinetic inductance in the range of nH/◻ and its deposition is compatible with conventional Al/AlOx/Al Josephson junction fabrication. We characterize microwave resonators fabricated from GrAl with a room temperature resistivity of 4×103μΩ⋅cm, which is a factor of 3 below the superconductor to insulator transition, showing a kinetic inductance fraction close to unity. The measured internal quality factors are on the order of Qi=105 in the single photon regime, and we demonstrate that non-equilibrium quasiparticles (QP) constitute the dominant loss mechanism. We extract QP relaxation times in the range of 1 s and we observe QP bursts every ∼20 s. The current level of coherence of GrAl resonators makes them attractive for integration in quantum devices, while it also evidences the need to reduce the density of non-equilibrium QPs.

Long-lived fluxon excitations can be trapped inside a superinductor ring, which is divided into an array of loops by a periodic sequence of Josephson junctions in the quantum regime,thereby allowing fluxons to tunnel between neighboring sites. By tuning the Josephson couplings, and implicitly the fluxon tunneling probability amplitudes, a wide class of 1D tight-binding lattice models may be implemented and populated with a stable number of fluxons. We illustrate the use of this quantum simulation platform by discussing the Su-Schrieffer-Heeger model in the 1-fluxon subspace, which hosts a symmetry protected topological phase with fractionally charged bound states at the edges. This pair of localized edge states could be used to implement a superconducting qubit increasingly decoupled from decoherence mechanisms.

We present the design of an inductively shunted transmon qubit with flux-tunable coupling to an embedded harmonic mode. This circuit construction offers the possibility to flux-choosebetween pure transverse and pure longitudinal coupling, that is coupling to the σx or σz degree of freedom of the qubit. While transverse coupling is the coupling type that is most commonly used for superconducting qubits, the inherently different longitudinal coupling has some remarkable advantages both for readout and for the scalability of a circuit. Being able to choose between both kinds of coupling in the same circuit provides the flexibility to use one for coupling to the next qubit and one for readout, or vice versa. We provide a detailed analysis of the system’s behavior using realistic parameters, along with a proposal for the physical implementation of a prototype device.

We present an argon ion beam milling process to remove the native oxide layer forming on aluminum thin films due to their exposure to atmosphere in between lithographic steps. Our cleaningprocess is readily integrable with conventional fabrication of Josephson junction quantum circuits. From measurements of the internal quality factors of superconducting microwave resonators with and without contacts, we place an upper bound on the residual resistance of an ion beam milled contact of 50mΩ⋅μm2 at a frequency of 4.5 GHz. Resonators for which only 6% of the total foot-print was exposed to the ion beam milling, in areas of low electric and high magnetic field, showed quality factors above 106 in the single photon regime, and no degradation compared to single layer samples. We believe these results will enable the development of increasingly complex superconducting circuits for quantum information processing.

Physical systems usually exhibit quantum behavior, such as superpositions and entanglement, only when they are sufficiently decoupled from a lossy environment. Paradoxically, a speciallyengineered interaction with the environment can become a resource for the generation and protection of quantum states. This notion can be generalized to the confinement of a system into a manifold of quantum states, consisting of all coherent superpositions of multiple stable steady states. We have experimentally confined the state of a harmonic oscillator to the quantum manifold spanned by two coherent states of opposite phases. In particular, we have observed a Schrodinger cat state spontaneously squeeze out of vacuum, before decaying into a classical mixture. This was accomplished by designing a superconducting microwave resonator whose coupling to a cold bath is dominated by photon pair exchange. This experiment opens new avenues in the fields of nonlinear quantum optics and quantum information, where systems with multi-dimensional steady state manifolds can be used as error corrected logical qubits.

Superconducting circuits have attracted growing interest in recent years as a promising candidate for fault-tolerant quantum information processing. Extensive efforts have always beentaken to completely shield these circuits from external magnetic field to protect the integrity of superconductivity. Surprisingly, here we show vortices can dramatically improve the performance of superconducting qubits by reducing the lifetimes of detrimental single-electron-like excitations known as quasiparticles. Using a contactless injection technique with unprecedented dynamic range, we directly demonstrate the power-law decay characteristics of the canonical quasiparticle recombination process, and show quantization of quasiparticle trapping rate due to individual vortices. Each vortex in our aluminium film shows a quasiparticle „trapping power“ of 0.067±0.005 cm2/s, enough to dominate over the vanishingly weak recombination in a modern transmon qubit. These results highlight the prominent role of quasiparticle trapping in future development of quantum circuits, and provide a powerful characterization tool along the way.

As the energy relaxation time of superconducting qubits steadily improves, non-equilibrium quasiparticle excitations above the superconducting gap emerge as an increasingly relevantlimit for qubit coherence. We measure fluctuations in the number of quasiparticle excitations by continuously monitoring the spontaneous quantum jumps between the states of a fluxonium qubit, in conditions where relaxation is dominated by quasiparticle loss. Resolution on the scale of a single quasiparticle is obtained by performing quantum non-demolition projective measurements within a time interval much shorter than T1, using a quantum limited amplifier (Josephson Parametric Converter). The quantum jumps statistics switches between the expected Poisson distribution and a non-Poissonian one, indicating large relative fluctuations in the quasiparticle population, on time scales varying from seconds to hours. This dynamics can be modified controllably by injecting quasiparticles or by seeding quasiparticle-trapping vortices by cooling down in magnetic field.

The simultaneous suppression of charge fluctuations and offsets is crucial
for preserving quantum coherence in devices exploiting large quantum
fluctuations of the superconducting phase.This requires an environment with
both extremely low DC and high RF impedance. Such an environment is provided by
a superinductance, defined as a zero DC resistance inductance whose impedance
exceeds the resistance quantum $R_Q = h/(2e)^2 simeq 6.5 mathrm{kOmega}$ at
frequencies of interest (1 – 10 GHz). In addition, the superinductance must
have as little dissipation as possible, and possess a self-resonant frequency
well above frequencies of interest. The kinetic inductance of an array of
Josephson junctions is an ideal candidate to implement the superinductance
provided its phase slip rate is sufficiently low. We successfully implemented
such an array using large Josephson junctions ($E_J >> E_C$), and measured
internal losses less than 20 ppm, self-resonant frequencies greater than 10
GHz, and phase slip rates less than 1 mHz.