Quantum Simulations of Relativistic Quantum Physics in Circuit QED

  1. J. S. Pedernales,
  2. R. Di Candia,
  3. D. Ballester,
  4. and E. Solano
We present a scheme for simulating relativistic quantum physics in circuit quantum electrodynamics. By using three classical microwave drives, we show that a superconducting qubit strongly-coupled
to a resonator field mode can be used to simulate the dynamics of the Dirac equation and Klein paradox in all regimes. Using the same setup we also propose the implementation of the Foldy-Wouthuysen canonical transformation, after which the time derivative of the position operator becomes a constant of the motion.

Path Entanglement of Continuous-Variable Quantum Microwaves

  1. E. P. Menzel,
  2. R. Di Candia,
  3. F. Deppe,
  4. P. Eder,
  5. L. Zhong,
  6. M. Ihmig,
  7. M. Haeberlein,
  8. A. Baust,
  9. E. Hoffmann,
  10. D. Ballester,
  11. K. Inomata,
  12. T. Yamamoto,
  13. Y. Nakamura,
  14. E. Solano,
  15. A. Marx,
  16. and R. Gross
Path entanglement constitutes an essential resource in quantum information and communication protocols. Here, we demonstrate frequency-degenerate entanglement between continuous-variable
quantum microwaves propagating along two spatially separated paths. We combine a squeezed and a vacuum state using a microwave beam splitter. Via correlation measurements, we detect and quantify the path entanglement contained in the beam splitter output state. Our experiments open the avenue to quantum teleportation, quantum communication, or quantum radar with continuous variables at microwave frequencies.