Thermally pumped on-chip maser

  1. George Thomas,
  2. Azat Gubaydullin,
  3. Dmitry S. Golubev,
  4. and Jukka P. Pekola
We present a theoretical model of an on-chip three level maser in a superconducting circuit based on a single artificial atom and pumped by temperature gradient between thermal baths coupled to different interlevel transitions. We show that maser powers of the order of few femtowatts, well exceeding the resolution of the sensitive bolometry, can be achieved with typical circuit parameters. We also demonstrate that population inversion in the artificial atom can be detected without measuring coherent radiation output of the maser. For that purpose, the system should operate as a three terminal heat transport device. The hallmark of population inversion is the influx of heat power into the weakly coupled output terminal even though its temperature exceeds the temperatures of the two other terminals.

leave comment