Simulating weak localization using superconducting quantum circuits

  1. Yu Chen,
  2. P. Roushan,
  3. D. Sank,
  4. C. Neill,
  5. Erik Lucero,
  6. Matteo Mariantoni,
  7. R. Barends,
  8. B. Chiaro,
  9. J. Kelly,
  10. A. Megrant,
  11. J. Y. Mutus,
  12. P. J. J. O'Malley,
  13. A. Vainsencher,
  14. J. Wenner,
  15. T. C. White,
  16. Yi Yin,
  17. A. N. Cleland,
  18. and John M. Martinis
Understanding complex quantum matter presents a central challenge in condensed matter physics. The difficulty lies in the exponential scaling of the Hilbert space with the system size, making solutions intractable for both analytical and conventional numerical methods. As originally envisioned by Richard Feynman, this class of problems can be tackled using controllable quantum simulators. Despite many efforts, building an quantum emulator capable of solving generic quantum problems remains an outstanding challenge, as this involves controlling a large number of quantum elements. Here, employing a multi-element superconducting quantum circuit and manipulating a single microwave photon, we demonstrate that we can simulate the weak localization phenomenon observed in mesoscopic systems. By engineering the control sequence in our emulator circuit, we are also able to reproduce the well-known temperature dependence of weak localization. Furthermore, we can use our circuit to continuously tune the level of disorder, a parameter that is not readily accessible in mesoscopic systems. By demonstrating a high level of control and complexity, our experiment shows the potential for superconducting quantum circuits to realize scalable quantum simulators.

leave comment