Resonance inversion in a superconducting cavity coupled to artificial atoms and a microwave background

  1. Juha Leppäkangas,
  2. Jan David Brehm,
  3. Ping Yang,
  4. Lingzhen Guo,
  5. Michael Marthaler,
  6. Alexey V. Ustinov,
  7. and Martin Weides
We demonstrate how heating of an environment can invert the line shape of a driven cavity. We consider a superconducting coplanar cavity coupled to multiple artificial atoms. The measured cavity transmission is characterized by Fano-type resonances with a shape that is continuously tunable by bias current through nearby (magnetic flux) control lines. In particular, the same dispersive shift of the microwave cavity can be observed as a peak or a dip. We find that this Fano-peak inversion is possible due to a tunable interference between a microwave transmission through a background, with reactive and dissipative properties, and through the cavity, affected by bias-current induced heating. The background transmission occurs due to crosstalk with the multiple control lines. We show how such background can be accounted for by a Jaynes- or Tavis-Cummings model with modified boundary conditions between the cavity and transmission-line microwave fields. A dip emerges when cavity transmission is comparable with background transmission and dissipation. We find generally that resonance positions determine system energy levels, whereas resonance shapes give information on system fluctuations and dissipation.

leave comment