Hybrid Quantum Error Correction in Qubit Architectures

  1. Lasse Bjørn Kristensen,
  2. Morten Kjaergaard,
  3. Christian Kraglund Andersen,
  4. and Nikolaj Thomas Zinner
Noise and errors are inevitable parts of any practical implementation of a quantum computer. As a result, large-scale quantum computation will require ways to detect and correct errors on quantum information. Here, we present such a quantum error correcting scheme for correcting the dominant error sources, phase decoherence and energy relaxation, in qubit architectures, using a hybrid approach combining autonomous correction based on engineered dissipation with traditional measurement-based quantum error correction. Using numerical simulations with realistic device parameters for superconducting circuits, we show that this scheme can achieve a 5- to 10-fold increase in storage-time while using only six qubits for the encoding and two ancillary qubits for the operation of the autonomous part of the scheme, providing a potentially large reduction of qubit overhead compared to typical measurement-based error correction schemes. Furthermore, the scheme relies on standard interactions and qubit driving available in most major quantum computing platforms, making it implementable in a wide range of architectures.

leave comment