Quantum control of an oscillator using stimulated nonlinearity

  1. Andrei Vrajitoarea,
  2. Ziwen Huang,
  3. Peter Groszkowski,
  4. Jens Koch,
  5. and Andrew A. Houck
Superconducting circuits extensively rely on the Josephson junction as a nonlinear electronic element for manipulating quantum information and mediating photon interactions. Despite
continuing efforts in designing anharmonic Josephson circuits with improved coherence times, the best photon lifetimes have been demonstrated in microwave cavities. Nevertheless, architectures based on quantum memories need a qubit element for addressing these harmonic modules at the cost of introducing additional loss channels and limiting process fidelities. This work focuses on tailoring the oscillator Hilbert space to enable a direct Rabi drive on individual energy levels. For this purpose we implement a flux-tunable inductive coupling between two linear resonators using a superconducting quantum interference device. We dynamically activate a three-wave mixing process through parametric flux modulation in order to selectively address the lowest eigenstates as an isolated two-level system. Measuring the Wigner function confirms we can prepare arbitrary states confined in the single photon manifold, with measured coherence times limited by the oscillator intrinsic quality factor. This architectural shift in engineering oscillators with stimulated nonlinearity can be exploited for designing long-lived quantum modules and offers flexibility in studying non-equilibrium physics with photons in a field-programmable simulator.

Universal stabilization of single-qubit states using a tunable coupler

  1. Ziwen Huang,
  2. Yao Lu,
  3. Eliot Kapit,
  4. David I. Schuster,
  5. and Jens Koch
We theoretically analyze a scheme for fast stabilization of arbitrary qubit states with high fidelities, extending a protocol recently demonstrated experimentally. Our scheme utilized
red and blue sideband transitions in a system composed of a fluxonium qubit, a low-Q LC-oscillator, and a coupler enabling us to tune the interaction between them. Under parametric modulations of the coupling strength, the qubit can be steered into any desired pure or mixed single-qubit state. For realistic circuit parameters, we predict that stabilization can be achieved within 100 ns. By varying the ratio between the oscillator’s damping rate and the effective qubit-oscillator coupling strength, we can switch between under-damped, critically-damped, and over-damped stabilization and find optimal working points. We further analyze the effect of thermal fluctuations and show that the stabilization scheme remains robust for realistic temperatures.

Universal stabilization of a parametrically coupled qubit

  1. Yao Lu,
  2. Srivatsan Chakram,
  3. Nelson Leung,
  4. Nathan Earnest,
  5. Ravi K. Naik,
  6. Ziwen Huang,
  7. Peter Groszkowski,
  8. Eliot Kapit,
  9. Jens Koch,
  10. and David I. Schuster
We autonomously stabilize arbitrary states of a qubit through parametric modulation of the coupling between a fixed frequency qubit and resonator. The coupling modulation is achieved
with a tunable coupler design, in which the qubit and the resonator are connected in parallel to a superconducting quantum interference device. This allows for quasi-static tuning of the qubit-cavity coupling strength from 12 MHz to more than 300 MHz. Additionally, the coupling can be dynamically modulated, allowing for single photon exchange in 6 ns. Qubit coherence times exceeding 20 μs are maintained over the majority of the range of tuning, limited primarily by the Purcell effect. The parametric stabilization technique realized using the tunable coupler involves engineering the qubit bath through a combination of photon non-conserving sideband interactions realized by flux modulation, and direct qubit Rabi driving. We demonstrate that the qubit can be stabilized to arbitrary states on the Bloch sphere with a worst-case fidelity exceeding 80 %.