Nonadiabatic Holonomic Quantum Computation with Dressed-state Qubits

  1. Zheng-Yuan Xue,
  2. Feng-Lei Gu,
  3. Zhuo-Ping Hong,
  4. Zi-He Yang,
  5. Dan-Wei Zhang,
  6. Yong Hu,
  7. and J. Q. You
Implementing holonomic quantum computation is a challenging task as it requires complicated interaction among multilevel systems. Here, we propose to implement nonadiabatic holonomic
quantum computation based on dressed-state qubits in circuit QED. An arbitrary holonomic single-qubit gate can be conveniently achieved using external microwave fields and tuning their amplitudes and phases. Meanwhile, nontrivial two-qubit gates can be implemented in a coupled cavities scenario assisted by a grounding SQUID with tunable interaction, where the tuning is achieved by modulating the ac flux threaded through the SQUID. In addition, our proposal is directly scalable, up to a two-dimensional lattice configuration. In our scheme, the dressed states only involve the lowest two levels of each transmon qubits and the effective interactions exploited are all of resonant nature. Therefore, we release the main difficulties for physical implementation of holonomic quantum computation on superconducting circuits.

Circuit Quantum Electrodynamics Simulator of Flat Band Physics in Lieb lattice

  1. Zi-He Yang,
  2. Yan-Pu Wang,
  3. Zheng-Yuan Xue,
  4. Wan-Li Yang,
  5. Yong Hu,
  6. Jin-Hua Gao,
  7. and Ying Wu
The concept of flat band plays an important role in strongly-correlated many-body physics. However, the demonstration of the flat band physics is highly nontrivial due to intrinsic
limitations in conventional condensed matter materials. Here we propose a circuit quantum electrodynamics simulator of the 2D Lieb lattice exhibiting a flat middle band. By exploiting the simple parametric conversion method, we design a photonic Lieb lattice with \textit{in situ} tunable hopping strengths in a 2D array of coupled superconducting transmissionline resonators. Moreover, the flexibility of our proposal enables the immediate incorporation of both the artificial gauge field and the strong photon-photon interaction in a time- and site-resolved manner. To unambiguously demonstrate the synthesized flat band, we further investigate the observation of the flat band localization of microwave photons through the pumping and the steady-state measurements of only few sites on the lattice. Requiring only current level of technique and being robust against imperfections in realistic circuits, our scheme can be readily tested in experiments and may pave a new way towards the future realization of exotic photonic quantum Hall fluids including anomalous quantum Hall effect and bosonic fractional quantum Hall states without magnetic fields.