Readout-induced suppression and enhancement of superconducting qubit lifetimes

  1. Ted Thorbeck,
  2. Zhihao Xiao,
  3. Archana Kamal,
  4. and Luke C.G. Govia
It has long been known that the lifetimes of superconducting qubits suffer during readout, increasing readout errors. We show that this degradation is due to the anti-Zeno effect, as
readout-induced dephasing broadens the qubit so that it overlaps ‚hot spots‘ of strong dissipation, likely due to two-level systems in the qubit’s bath. Using a flux-tunable qubit to probe the qubit’s frequency dependent loss, we accurately predict the change in lifetime during readout with a new self-consistent master equation that incorporates the modification to qubit relaxation due to measurement-induced dephasing. Moreover, we controllably demonstrate both the Zeno and anti-Zeno effects, which explain suppression and the rarer enhancement of qubit lifetimes during readout.