Qubit readout and reset are critical components for the practical realization of quantum computing systems, as outlined by the DiVincenzo criteria. Here, we present a scalable architectureemploying frequency-tunable nonlinear Purcell filters designed specifically for superconducting qubits. This architecture enables flexible readout and unconditional reset functionalities. Our readout protocol dynamically adjusts the effective linewidth of the readout resonator through a tunable filter, optimizing the signal-to-noise ratio during measurement while suppressing photon noise during idle periods. Achieving a readout fidelity of 99.3% without using Josephson parametric amplifiers or traveling-wave parametric amplifiers, even with a small dispersive shift, demonstrates its effectiveness. For reset operations, our protocol utilizes the tunable coupler adjacent to the target qubit as an intermediary to channel qubit excitations into the Purcell filter, enabling rapid dissipation. We demonstrate unconditional reset of both leakage-induced |2⟩ and |1⟩ states within 200 ns (error rate ≤1%), and reset of the |1⟩ state alone in just 75 ns. Repeated reset cycles (≤600 ns) further reduce the error rate below 0.1%. Furthermore, the filter suppresses both photon noise and the Purcell effect, thereby reducing qubit decoherence. This scalable Purcell filter architecture shows exceptional performance in qubit readout, reset, and protection, marking it as a promising hardware component for advancing fault-tolerant quantum computing systems.
Quantum simulation has emerged as a powerful framework for investigating complex many – body phenomena. A key requirement for emulating these dynamics is the realization of fullycontrollable quantum systems enabling various spin interactions. Yet, quantum simulators remain constrained in the types of attainable interactions. Here we demonstrate experimental realization of multiple microwave – engineered spin interactions in superconducting quantum circuits. By precisely controlling the native XY interaction and microwave drives, we achieve tunable spin Hamiltonians including: (i) XYZ spin models with continuously adjustable parameters, (ii) transverse – field Ising systems, and (iii) Dzyaloshinskii – Moriya interacting systems. Our work expands the toolbox for analogue – digital quantum simulation, enabling exploration of a wide range of exotic quantum spin models.
Three-qubit gates can be constructed using combinations of single-qubit and two-qubit gates, making their independent realization unnecessary. However, direct implementation of three-qubitgates reduces the depth of quantum circuits, streamlines quantum programming, and facilitates efficient circuit optimization, thereby enhancing overall performance in quantum computation. In this work, we propose and experimentally demonstrate a high-fidelity scheme for implementing a three-qubit controlled-controlled-Z (CCZ) gate in a flip-chip superconducting quantum processor with tunable couplers. This direct CCZ gate is implemented by simultaneously leveraging two tunable couplers interspersed between three qubits to enable three-qubit interactions, achieving an average final state fidelity of 97.94% and a process fidelity of 93.54%. This high fidelity cannot be achieved through a simple combination of single- and two-qubit gate sequences from processors with similar performance levels. Our experiments also verify that multi-layer direct implementation of the CCZ gate exhibits lower leakage compared to decomposed gate approaches. To further showcase the versatility of our approach, we construct a Toffoli gate by combining the CCZ gate with Hadamard gates. As a showcase, we utilize the CCZ gate as an oracle to implement the Grover search algorithm on three qubits, demonstrating high performance with the target probability amplitude significantly enhanced after two iterations. These results highlight the advantage of our approach, and facilitate the implementation of complex quantum circuits.