Achieving millisecond coherence fluxonium through overlap Josephson junctions

  1. Fei Wang,
  2. Kannan Lu,
  3. Huijuan Zhan,
  4. Lu Ma,
  5. Feng Wu,
  6. Hantao Sun,
  7. Hao Deng,
  8. Yang Bai,
  9. Feng Bao,
  10. Xu Chang,
  11. Ran Gao,
  12. Xun Gao,
  13. Guicheng Gong,
  14. Lijuan Hu,
  15. Ruizi Hu,
  16. Honghong Ji,
  17. Xizheng Ma,
  18. Liyong Mao,
  19. Zhijun Song,
  20. Chengchun Tang,
  21. Hongcheng Wang,
  22. Tenghui Wang,
  23. Ziang Wang,
  24. Tian Xia,
  25. Hongxin Xu,
  26. Ze Zhan,
  27. Gengyan Zhang,
  28. Tao Zhou,
  29. Mengyu Zhu,
  30. Qingbin Zhu,
  31. Shasha Zhu,
  32. Xing Zhu,
  33. Yaoyun Shi,
  34. Hui-Hai Zhao,
  35. and Chunqing Deng
Fluxonium qubits are recognized for their high coherence times and high operation fidelities, attributed to their unique design incorporating over 100 Josephson junctions per superconducting

Unraveling the role of disorderness in superconducting materials on qubit coherence

  1. Ran Gao,
  2. Feng Wu,
  3. Hantao Sun,
  4. Jianjun Chen,
  5. Hao Deng,
  6. Xizheng Ma,
  7. Xiaohe Miao,
  8. Zhijun Song,
  9. Xin Wan,
  10. Fei Wang,
  11. Tian Xia,
  12. Make Ying,
  13. Chao Zhang,
  14. Yaoyun Shi,
  15. Hui-Hai Zhao,
  16. and Chunqing Deng
Introducing disorderness in the superconducting materials has been considered promising to enhance the electromagnetic impedance and realize noise-resilient superconducting qubits.

Characterization of loss mechanisms in a fluxonium qubit

  1. Hantao Sun,
  2. Feng Wu,
  3. Hsiang-Sheng Ku,
  4. Xizheng Ma,
  5. Jin Qin,
  6. Zhijun Song,
  7. Tenghui Wang,
  8. Gengyan Zhang,
  9. Jingwei Zhou,
  10. Yaoyun Shi,
  11. Hui-Hai Zhao,
  12. and Chunqing Deng
Using a fluxonium qubit with in situ tunability of its Josephson energy, we characterize its energy relaxation at different flux biases as well as different Josephson energy values.

Titanium Nitride Film on Sapphire Substrate with Low Dielectric Loss for Superconducting Qubits

  1. Hao Deng,
  2. Zhijun Song,
  3. Ran Gao,
  4. Tian Xia,
  5. Feng Bao,
  6. Xun Jiang,
  7. Hsiang-Sheng Ku,
  8. Zhisheng Li,
  9. Xizheng Ma,
  10. Jin Qin,
  11. Hantao Sun,
  12. Chengchun Tang,
  13. Tenghui Wang,
  14. Feng Wu,
  15. Wenlong Yu,
  16. Gengyan Zhang,
  17. Xiaohang Zhang,
  18. Jingwei Zhou,
  19. Xing Zhu,
  20. Yaoyun Shi,
  21. Hui-Hai Zhao,
  22. and Chunqing Deng
Dielectric loss is one of the major decoherence sources of superconducting qubits. Contemporary high-coherence superconducting qubits are formed by material systems mostly consisting

Fluxonium: an alternative qubit platform for high-fidelity operations

  1. Feng Bao,
  2. Hao Deng,
  3. Dawei Ding,
  4. Ran Gao,
  5. Xun Gao,
  6. Cupjin Huang,
  7. Xun Jiang,
  8. Hsiang-Sheng Ku,
  9. Zhisheng Li,
  10. Xizheng Ma,
  11. Xiaotong Ni,
  12. Jin Qin,
  13. Zhijun Song,
  14. Hantao Sun,
  15. Chengchun Tang,
  16. Tenghui Wang,
  17. Feng Wu,
  18. Tian Xia,
  19. Wenlong Yu,
  20. Fang Zhang,
  21. Gengyan Zhang,
  22. Xiaohang Zhang,
  23. Jingwei Zhou,
  24. Xing Zhu,
  25. Yaoyun Shi,
  26. Jianxin Chen,
  27. Hui-Hai Zhao,
  28. and Chunqing Deng
Superconducting qubits provide a promising path toward building large-scale quantum computers. The simple and robust transmon qubit has been the leading platform, achieving multiple

Free Mode Removal and Mode Decoupling for Simulating General Superconducting Quantum Circuits

  1. Dawei Ding,
  2. Hsiang-Sheng Ku,
  3. Yaoyun Shi,
  4. and Hui-Hai Zhao
Superconducting quantum circuits is one of the leading candidates for a universal quantum computer. Designing novel qubit and multi-qubit superconducting circuits requires the ability