Simulation of Kitaev model using one-dimensional chain of superconducting qubits and environmental effect on topological states

  1. Yang Zhang,
  2. Yun-Qiu Ge,
  3. and Yu-xi Liu
Kitaev fermionic chain is one of the important physical models for studying topological physics and quantum computing. We here propose an approach to simulate the one-dimensional Kitaev
model by a chain of superconducting qubit circuits. Furthermore, we study the environmental effect on topological quantum states of the Kitaev model. Besides the independent environment surrounding each qubit, we also consider the common environment shared by two nearest neighboring qubits. Such common environment can result in an effective non-Hermitian dissipative coupling between two qubits. Through theoretical analysis and numerical calculations, we show that the common environment can significantly change properties of topological states in contrast to the independent environment. In addition, we also find that dissipative couplings at the edges of the chain can be used to more easily tune the topological properties of the system than those at other positions. Our study may open a new way to explore topological quantum phase transition and various environmental effects on topological physics using superconducting qubit circuits.

Quantum versus Classical Regime in Circuit Quantum Acoustodynamics

  1. Gang-hui Zeng,
  2. Yang Zhang,
  3. Aleksey N. Bolgar,
  4. Dong He,
  5. Bin Li,
  6. Xin-hui Ruan,
  7. Lan Zhou,
  8. Le-Mang Kuang,
  9. Oleg V. Astafiev,
  10. Yu-xi Liu,
  11. and Z.H. Peng
We experimentally study a circuit quantum acoustodynamics system, which consists of a superconducting artificial atom, coupled to both a two-dimensional surface acoustic wave resonator
and a one-dimensional microwave transmission line. The strong coupling between the artificial atom and the acoustic wave resonator is confirmed by the observation of the vacuum Rabi splitting at the base temperature of dilution refrigerator. We show that the propagation of microwave photons in the microwave transmission line can be controlled by a few phonons in the acoustic wave resonator. Furthermore, we demonstrate the temperature effect on the measurements of the Rabi splitting and temperature induced transitions from high excited dressed states. We find that the spectrum structure of two-peak for the Rabi splitting becomes into those of several peaks, and gradually disappears with the increase of the environmental temperature T. The quantum-to-classical transition is observed around the crossover temperature Tc, which is determined via the thermal fluctuation energy kBT and the characteristic energy level spacing of the coupled system. Experimental results agree well with the theoretical simulations via the master equation of the coupled system at different effective temperatures.

Creation of superposition of arbitrary states encoded in two three-dimensional cavities

  1. Tong Liu,
  2. Yang Zhang,
  3. Bao-qing Guo,
  4. Chang-shui Yu,
  5. and Wei-ning Zhang
The principle of superposition is a key ingredient for quantum mechanics. A recent work (M. Oszmaniec et al., Phys. Rev. Lett. 116, 110403 (2016)) has shown that a quantum adder that
deterministically generates a superposition of two unknown states is forbidden. Here we propose a probabilistic approach for creating a superposition state of two arbitrary states encoded in two three-dimensional cavities. Our implementation is based on a three-level superconducting transmon qubit dispersively coupled to two cavities. Numerical simulations show that high-fidelity generation of the superposition of two coherent states is feasible with current circuit QED technology. Our method also works for other physical systems such as other types of superconducting qubits, natural atoms, quantum dots, and nitrogen-vacancy (NV) centers.

Deterministic transfer of an unknown qutrit state assisted by the low-Q microwave resonators

  1. Tong Liu,
  2. Yang Zhang,
  3. Chang-Shui Yu,
  4. and Wei-Ning Zhang
Qutrits (i.e., three-level quantum systems) can be used to achieve many quantum information and communication tasks due to their large Hilbert spaces. In this work, we propose a scheme
to transfer an unknown quantum state between two flux qutrits coupled to two superconducting coplanar waveguide resonators. The quantum state transfer can be deterministically achieved without measurements. Because resonator photons are virtually excited during the operation time, the decoherences caused by the resonator decay and the unwanted inter-resonator crosstalk are greatly suppressed. Moreover, our approach can be adapted to other solid-state qutrits coupled to circuit resonators. Numerical simulations show that the high-fidelity transfer of quantum state between the two qutrits is feasible with current circuit QED technology.

Circuit QED: Cross-Kerr-effect induced by a superconducting qutrit without classical pulses

  1. Tong Liu,
  2. Chui-ping Yang,
  3. Yang Zhang,
  4. Chang-shui Yu,
  5. and Wei-ning Zhang
The realization of cross-Kerr nonlinearity is an important task for many applications in quantum information processing. In this work, we propose a method for realizing cross-Kerr nonlinearity
interaction between two superconducting coplanar waveguide resonators coupled by a three-level superconducting flux qutrit (coupler). By employing the qutrit-resonator dispersive interaction, we derive an effective Hamiltonian involving two-photon number operators and a coupler operator. This Hamiltonian can be used to describe a cross-Kerr nonlinearity interaction between two resonators when the coupler is in the ground state. Because the coupler is unexcited during the entire process, the effect of coupler decoherence can be greatly minimized. More importantly, compared with the previous proposals, our proposal does not require classical pulses. Furthermore, due to use of only a three-level qutrit, the experimental setup is much simplified when compared with previous proposals requiring a four-level artificial atomic systems. Based on our Hamiltonian, we implement a two-resonator qubits controlled-phase gate and generate a two-resonator entangled coherent state. Numerical simulation shows that the high-fidelity implementation of the phase gate and creation of the entangled coherent state are feasible with current circuit QED technology.