Floquet Engineering of Anisotropic Transverse Interactions in Superconducting Qubits

  1. Yongqi Liang,
  2. Wenhui Huang,
  3. Libo Zhang,
  4. Ziyu Tao,
  5. Kai Tang,
  6. Ji Chu,
  7. Jiawei Qiu,
  8. Xuandong Sun,
  9. Yuxuan Zhou,
  10. Jiawei Zhang,
  11. Jiajian Zhang,
  12. Weijie Guo,
  13. Yang Liu,
  14. Yuanzhen Chen,
  15. Song Liu,
  16. Youpeng Zhong,
  17. Jingjing Niu,
  18. and Dapeng Yu
Superconducting transmon qubits have established as a leading candidate for quantum computation, as well as a flexible platform for exploring exotic quantum phases and dynamics. However,
physical coupling naturally yields isotropic transverse interactions between qubits, restricting their access to diverse quantum phases that require spatially dependent interactions. Here, we demonstrate the simultaneous realization of both pairing (XX-YY) and hopping (XX+YY) interactions between transmon qubits by Floquet engineering. The coherent superposition of these interactions enables independent control over the XX and YY terms, yielding anisotropic transverse interactions. By aligning the transverse interactions along a 1D chain of six qubits, as calibrated via Aharonov-Bohm interference in synthetic space, we synthesize a transverse field Ising chain model and explore its dynamical phase transition under varying external field. The scalable synthesis of anisotropic transverse interactions paves the way for the implementation of more complex physical systems requiring spatially dependent interactions, enriching the toolbox for engineering quantum phases with superconducting qubits.

In situ mixer calibration for superconducting quantum circuits

  1. Nan Wu,
  2. Jing Lin,
  3. Changrong Xie,
  4. Zechen Guo,
  5. Wenhui Huang,
  6. Libo Zhang,
  7. Yuxuan Zhou,
  8. Xuandong Sun,
  9. Jiawei Zhang,
  10. Weijie Guo,
  11. Xiayu Linpeng,
  12. Song Liu,
  13. Yang Liu,
  14. Wenhui Ren,
  15. Ziyu Tao,
  16. Ji Jiang,
  17. Ji Chu,
  18. Jingjing Niu,
  19. Youpeng Zhong,
  20. and Dapeng Yu
Mixers play a crucial role in superconducting quantum computing, primarily by facilitating frequency conversion of signals to enable precise control and readout of quantum states. However,
imperfections, particularly carrier leakage and unwanted sideband signal, can significantly compromise control fidelity. To mitigate these defects, regular and precise mixer calibrations are indispensable, yet they pose a formidable challenge in large-scale quantum control. Here, we introduce an in situ calibration technique and outcome-focused mixer calibration scheme using superconducting qubits. Our method leverages the qubit’s response to imperfect signals, allowing for calibration without modifying the wiring configuration. We experimentally validate the efficacy of this technique by benchmarking single-qubit gate fidelity and qubit coherence time.

M2CS: A Microwave Measurement and Control System for Large-scale Superconducting Quantum Processors

  1. Jiawei Zhang,
  2. Xuandong Sun,
  3. Zechen Guo,
  4. Yuefeng Yuan,
  5. Yubin Zhang,
  6. Ji Chu,
  7. Wenhui Huang,
  8. Yongqi Liang,
  9. Jiawei Qiu,
  10. Daxiong Sun,
  11. Ziyu Tao,
  12. Jiajian Zhang,
  13. Weijie Guo,
  14. Ji Jiang,
  15. Xiayu Linpeng,
  16. Yang Liu,
  17. Wenhui Ren,
  18. Jingjing Niu,
  19. Youpeng Zhong,
  20. and Dapeng Yu
As superconducting quantum computing continues to advance at an unprecedented pace, there is a compelling demand for the innovation of specialized electronic instruments that act as
crucial conduits between quantum processors and host computers. Here, we introduce a Microwave Measurement and Control System (M2CS) dedicated for large-scale superconducting quantum processors. M2CS features a compact modular design that balances overall performance, scalability, and flexibility. Electronic tests of M2CS show key metrics comparable to commercial instruments. Benchmark tests on transmon superconducting qubits further show qubit coherence and gate fidelities comparable to state-of-the-art results, confirming M2CS’s capability to meet the stringent requirements of quantum experiments run on intermediate-scale quantum processors. The system’s compact and scalable design offers significant room for further enhancements that could accommodate the measurement and control requirements of over 1000 qubits, and can also be adopted to other quantum computing platforms such as trapped ions and silicon quantum dots. The M2CS architecture may also be applied to wider range of scenarios, such as microwave kinetic inductance detectors, as well as phased array radar systems.

Coupler-Assisted Leakage Reduction for Scalable Quantum Error Correction with Superconducting Qubits

  1. Xiaohan Yang,
  2. Ji Chu,
  3. Zechen Guo,
  4. Wenhui Huang,
  5. Yongqi Liang,
  6. Jiawei Liu,
  7. Jiawei Qiu,
  8. Xuandong Sun,
  9. Ziyu Tao,
  10. Jiawei Zhang,
  11. Jiajian Zhang,
  12. Libo Zhang,
  13. Yuxuan Zhou,
  14. Weijie Guo,
  15. Ling Hu,
  16. Ji Jiang,
  17. Yang Liu,
  18. Xiayu Linpeng,
  19. Tingyong Chen,
  20. Yuanzhen Chen,
  21. Jingjing Niu,
  22. Song Liu,
  23. Youpeng Zhong,
  24. and Dapeng Yu
Superconducting qubits are a promising platform for building fault-tolerant quantum computers, with recent achievement showing the suppression of logical error with increasing code
size. However, leakage into non-computational states, a common issue in practical quantum systems including superconducting circuits, introduces correlated errors that undermine QEC scalability. Here, we propose and demonstrate a leakage reduction scheme utilizing tunable couplers, a widely adopted ingredient in large-scale superconducting quantum processors. Leveraging the strong frequency tunability of the couplers and stray interaction between the couplers and readout resonators, we eliminate state leakage on the couplers, thus suppressing space-correlated errors caused by population propagation among the couplers. Assisted by the couplers, we further reduce leakage to higher qubit levels with high efficiency (98.1%) and low error rate on the computational subspace (0.58%), suppressing time-correlated errors during QEC cycles. The performance of our scheme demonstrates its potential as an indispensable building block for scalable QEC with superconducting qubits.

Deterministic quantum teleportation between distant superconducting chips

  1. Jiawei Qiu,
  2. Yang Liu,
  3. Jingjing Niu,
  4. Ling Hu,
  5. Yukai Wu,
  6. Libo Zhang,
  7. Wenhui Huang,
  8. Yuanzhen Chen,
  9. Jian Li,
  10. Song Liu,
  11. Youpeng Zhong,
  12. Luming Duan,
  13. and Dapeng Yu
Quantum teleportation~cite{Bennett1993} is of both fundamental interest and great practical importance in quantum information science. To date, quantum teleportation has been implemented
in various physical systems~\cite{Pirandola2015}, among which superconducting qubits are of particular practical significance as they emerge as a leading system to realize large-scale quantum computation~\cite{Arute2019,Wu2021}. Nevertheless, the number of superconducting qubits on the same chip is severely limited by the available chip size, the cooling power, and the wiring complexity. Realization of quantum teleportation and remote computation over qubits on distant superconducting chips is a key quantum communication technology to scaling up the system through a distributed quantum computational network~\cite{Gottesman1999,Eisert2000,Jiang2007,Kimble2008,Monroe2014}. However, this goal has not been realized yet in experiments due to the technical challenge of making a quantum interconnect between distant superconducting chips and the inefficient transfer of flying microwave photons over the lossy interconnects~\cite{Kurpiers2018,Axline2018,Campagne2018,Magnard2020}. Here we demonstrate deterministic teleportation of quantum states and entangling gates between distant superconducting chips connected by a 64-meter-long cable bus featuring an ultralow loss of 0.32~dB/km at cryogenic temperatures, where high fidelity remote entanglement is generated via flying microwave photons utilizing time-reversal-symmetry~\cite{Cirac1997,Korotkov2011}. Apart from the fundamental interest of teleporting macroscopic superconducting qubits over a long distance, our work lays a foundation to realization of large-scale superconducting quantum computation through a distributed computational network~\cite{Gottesman1999,Eisert2000,Jiang2007,Kimble2008,Monroe2014}.

Low-loss interconnects for modular superconducting quantum processors

  1. Jingjing Niu,
  2. Libo Zhang,
  3. Yang Liu,
  4. Jiawei Qiu,
  5. Wenhui Huang,
  6. Jiaxiang Huang,
  7. Hao Jia,
  8. Jiawei Liu,
  9. Ziyu Tao,
  10. Weiwei Wei,
  11. Yuxuan Zhou,
  12. Wanjing Zou,
  13. Yuanzhen Chen,
  14. Xiaowei Deng,
  15. Xiuhao Deng,
  16. Changkang Hu,
  17. Ling Hu,
  18. Jian Li,
  19. Dian Tan,
  20. Yuan Xu,
  21. Fei Yan,
  22. Tongxing Yan,
  23. Song Liu,
  24. Youpeng Zhong,
  25. Andrew N. Cleland,
  26. and Dapeng Yu
Scaling is now a key challenge in superconducting quantum computing. One solution is to build modular systems in which smaller-scale quantum modules are individually constructed and
calibrated, and then assembled into a larger architecture. This, however, requires the development of suitable interconnects. Here, we report low-loss interconnects based on pure aluminium coaxial cables and on-chip impedance transformers featuring quality factors up to 8.1×105, which is comparable to the performance of our transmon qubits fabricated on single-crystal sapphire substrate. We use these interconnects to link five quantum modules with inter-module quantum state transfer and Bell state fidelities up to 99\%. To benchmark the overall performance of the processor, we create maximally-entangled, multi-qubit Greenberger-Horne-Zeilinger (GHZ) states. The generated inter-module four-qubit GHZ state exhibits 92.0\% fidelity. We also entangle up to 12 qubits in a GHZ state with 55.8±1.8% fidelity, which is above the genuine multipartite entanglement threshold of 1/2. These results represent a viable modular approach for large-scale superconducting quantum processors.