Surface-Code Hardware Hamiltonian

  1. Xuexin Xu,
  2. Kuljeet Kaur,
  3. ChloƩ Vignes,
  4. Mohammad H. Ansari,
  5. and John M. Martinis
We present a scalable framework for accurately modeling many-body interactions in surface-code quantum processor units (QPUs). Combining a concise diagrammatic formalism with high-precision
numerical methods, our approach efficiently evaluates high-order, long-range Pauli string couplings and maps complete chip layouts onto exact effective Hamiltonians. Applying this method to surface-code architectures, such as Google’s Sycamore lattice, we identify three distinct operational regimes: computationally stable, error-dominated, and hierarchy-inverted. Our analysis reveals that even modest increases in residual qubit-qubit crosstalk can invert the interaction hierarchy, driving the system from a computationally favorable phase into a topologically ordered regime. This framework thus serves as a powerful guide for optimizing next-generation high-fidelity surface-code hardware and provides a pathway to investigate emergent quantum many-body phenomena.

Modeling and Suppressing Unwanted Parasitic Interactions in Superconducting Circuits

  1. Xuexin Xu
Superconducting qubits are among the most promising candidates for building quantum computers. Despite significant improvements in qubit coherence, achieving a fault-tolerant quantum
computer remains a major challenge, largely due to imperfect gate fidelity. A key source of this infidelity is the parasitic interaction between coupled qubits, which this thesis addresses in two- and three-qubit circuits. This parasitic interaction causes a bending between computational and non-computational levels, leading to a parasitic ZZ interaction. The thesis first investigates the possibility of zeroing the ZZ interaction in two qubit combinations: a pair of interacting transmons, and a hybrid pair of a transmon coupled to a capacitively shunted flux qubit (CSFQ). The theory developed is used to accurately simulate experimental results from our collaborators, who measured a CSFQ-transmon pair with and without a cross-resonance (CR) gate. The strong agreement between theory and experiment motivated further study of a CR gate that achieves 99.9% fidelity in the absence of static ZZ interaction. Since the CR pulse adds an additional ZZ component to the static part, a new strategy called dynamical ZZ freedom is proposed to zero the total ZZ interaction. This strategy can be applied in all-transmon circuits to enable perfect entanglement. Based on these findings, a new two-qubit gate, the parasitic-free (PF) gate, is proposed. Additionally, the thesis explores how to utilize the ZZ interaction to enhance the performance of a controlled-Z gate. Lastly, the impact of a third qubit on two-qubit gate performance is examined, with several examples illustrating the properties of two-body ZZ and three-body ZZZ interactions in circuits with more than two qubits.

Suppression of Unwanted ZZ Interactions in a Hybrid Two-Qubit System

  1. Jaseung Ku,
  2. Xuexin Xu,
  3. Markus Brink,
  4. David C. McKay,
  5. Jared B. Hertzberg,
  6. Mohammad H. Ansari,
  7. and B. L. T. Plourde
Mitigating crosstalk errors, whether classical or quantum mechanical, is critically important for achieving high-fidelity entangling gates in multi-qubit circuits. For weakly anharmonic
superconducting qubits, unwanted ZZ interactions can be suppressed by combining qubits with opposite anharmonicity. We present experimental measurements and theoretical modeling of two-qubit gate error for gates based on the cross resonance interaction between a capacitively shunted flux qubit and a transmon and demonstrate the elimination of the ZZ interaction.