Superradiant phase transition with flat bands in a circuit QED lattice

  1. Gui-Lei Zhu,
  2. Xin-You Lü,
  3. Hamidreza Ramezani,
  4. Clive Emary,
  5. Jin-Hua Gao,
  6. and Ying Wu
We investigate the interplay of superradiant phase transition (SPT) and energy band physics in an extended Dicke-Hubbard lattice whose unit cell consists of a Dicke model coupled to
an atomless cavity. We found in such a periodic lattice the critical point that occurs in a single Dicke model becomes a critical region that is periodically changing with the wavenumber k. In the weak-coupling normal phase of the system we observed a flat band and its corresponding localization that can be controlled by the ground-state SPT. Our work builds the connection between flat band physics and SPT, which may fundamentally broaden the regimes of many-body theory and quantum optics.

Superfluid-Mott-insulator transition in superconducting circuits with weak anharmonicity

  1. Li-Li Zheng,
  2. Ke-Min Li,
  3. Xin-You Lü,
  4. and Y. Wu
We investigate theoretically the ground-state property of a two-dimensional array of superconducting circuits including the on-site superconducting qubits (SQs) with weak anharmonicity.
In particular, we analyse the influence of this anharmonicity on the Mott insulator to superfluid quantum phase transition. The complete ground-state phase diagrams are presented under the mean field approximation. Interestingly, the anharmonicity of SQs affects the Mott lobes enormously, and the single excitation Mott lobe disappears when the anharmonicity become zero. Our results can be used to guide the implementations of quantum simulations using the superconducting circuits, which have nice integrating and flexibility.

Quantum memory using a hybrid circuit with flux qubits and NV centers

  1. Xin-You Lü,
  2. Ze-Liang Xiang,
  3. Wei Cui,
  4. J. Q. You,
  5. and Franco Nori
We propose how to realize high-fidelity quantum storage using a hybrid quantum architecture including two coupled flux qubits and a nitrogen-vacancy center ensemble (NVE). One of the
flux qubits is considered as the quantum computing processor and the NVE serves as the quantum memory. By separating the computing and memory units, the influence of the quantum computing process on the quantum memory can be effectively eliminated, and hence the quantum storage of an arbitrary quantum state of the computing qubit could be achieved with high fidelity. Furthermore the present proposal is robust with respect to fluctuations of the system parameters, and it is experimentally feasibile with currently available technology.

A hybrid quantum circuit consisting of a superconducting flux qubit coupled to both a spin ensemble and a transmission-line resonator

  1. Ze-Liang Xiang,
  2. Xin-You Lu,
  3. Tie-Fu Li,
  4. J. Q. You,
  5. and Franco Nori
We propose an experimentally realizable hybrid quantum circuit for achieving a strong coupling between a spin ensemble and a transmission-line resonator via a superconducting flux qubit
used as a data bus. The resulting coupling can be used to transfer quantum information between the spin ensemble and the resonator. More importantly, in contrast to the direct coupling without a data bus, our approach requires far less spins to achieve a strong coupling between the spin ensemble and the resonator (e.g., 3 to 4 orders of magnitude less). This drastic reduction of the number of spins in the ensemble can greatly improve the quantum coherence of the spin ensemble. This proposed hybrid quantum circuit could enable a long-time quantum memory when storing information in the spin ensemble.