and circuit quantum electrodynamics (cQED) [2]. Coupled to
artificial atoms in the form of superconducting"]qubits [3, 4], they now provide
a technologically promising and scalable platform for quantum information
processing tasks [2, 5-8]. Coupling these circuits, in situ, to other quantum
systems, such as molecules [9, 10], spin ensembles [11, 12], quantum dots [13]
or mechanical oscillators [14, 15] has been explored to realize hybrid systems
with extended functionality. Here, we couple a superconducting coplanar
waveguide resonator to a nano-coshmechanical oscillator, and demonstrate
all-microwave field controlled slowing, advancing and switching of microwave
signals. This is enabled by utilizing electromechanically induced transparency
[16-18], an effect analogous to electromagnetically induced transparency (EIT)
in atomic physics [19]. The exquisite temporal control gained over this
phenomenon provides a route towards realizing advanced protocols for storage of
both classical and quantum microwave signals [20-22], extending the toolbox of
control techniques of the microwave field.