In the last few years, much attention has been paid to exceptional surfaces (ESs) owing to various important physical phenomena and potential applications. However, high-order ESs inpseudo-Hermitian systems have not been reported until now. Here, we study the high-order ES in a pseudo-Hermitian superconducting (SC) circuit system. In our proposal, the SC circuit system is composed of three circularly coupled SC cavities, where the gain and loss are balanced. According to the eigenvalue properties of the pseudo-Hermitian Hamiltonian, we derive the general pseudo-Hermitian conditions for the ternary SC system. In the special pseudo-Hermitian case with parity-time symmetry, all third-order exceptional points (EP3s) of the SC system form a third-order exceptional line in the parameter space. Under the general pseudo-Hermitian conditions, more EP3s are found, and all EP3s are located on a surface, i.e., a third-order exceptional surface is constructed. Moreover, we also investigate the eigenvalues of the pseudo-Hermitian SC circuit around EP3s. Our work opens up a door for exploring high-order ESs and related applications in pseudo-Hermitian systems.
Superconducting qubits provide a competitive platform for quantum simulation of complex dynamics that lies at the heart of quantum many-body systems, because of the flexibility andscalability afforded by the nature of microfabrication. However, in a multiqubit device, the physical form of couplings between qubits is either an electric (capacitor) or magnetic field (inductor), and the associated quadratic field energy determines that only two-body interaction in the Hamiltonian can be directly realized. Here we propose and experimentally synthesize the three-body spin-chirality interaction in a superconducting circuit based on Floquet engineering. By periodically modulating the resonant frequencies of the qubits connected with each other via capacitors, we can dynamically turn on and off qubit-qubit couplings, and further create chiral flows of the excitations in the three-qubit circular loop. Our result is a step toward engineering dynamical and many-body interactions in multiqubit superconducting devices, which potentially expands the degree of freedom in quantum simulation tasks.
Superradiance and subradiance concerning enhanced and inhibited collective radiation of an ensemble of atoms have been a central topic in quantum optics. However, precise generationand control of these states remain challenging. Here we deterministically generate up to 10-qubit superradiant and 8-qubit subradiant states, each containing a single excitation, in a superconducting quantum circuit with multiple qubits interconnected by a cavity resonator. The Nāāā-scaling enhancement of the coupling strength between the superradiant states and the cavity is validated. By applying appropriate phase gate on each qubit, we are able to switch the single collective excitation between superradiant and subradiant states. While the subradiant states containing a single excitation are forbidden from emitting photons, we demonstrate that they can still absorb photons from the resonator. However, for even number of qubits, a singlet state with half of the qubits being excited can neither emit nor absorb photons, which is verified with 4 qubits. This study is a step forward in coherent control of collective radiation and has promising applications in quantum information processing.
Designing high-precision and efficient schemes is of crucial importance for quantum parameter estimation in practice. The estimation scheme based on continuous quantum measurement isone possible type of this, which looks also the most natural choice in case such as continuous dynamical process. In this work we specify the study to the stat-of-the-art superconducting circuit quantum-electrodynamics (QED) system, where the high-quality continuous measurement has been extensively exploited in the past decade. Within the framework of Bayesian estimation and particularly using the quantum Bayesian rule in circuit QED, we numerically simulate the likelihood function as estimator for the Rabi frequency of qubit oscillation. We find that, by proper design of the interaction strength of measurement, the estimate precision can scale with the measurement time beyond the standard quantum limit, which is usually assumed for this type of continuous measurement since no more special quantum resource is involved. We understand this remarkable result by quantum correlation in time between the output signals, and simulate the effect of quantum efficiency of the measurement on the precision scaling behavior.
Recently it was shown that mesoscopic superpositions of photonic states can be prepared based on a spin-gated chiral photon rotation in a Fock-state lattice of three cavities coupledto a spin (two-level atom). By exchanging the roles of the cavities and the spin, we have performed parallel operations on chiral spin states based on an antisymmetric spin exchange interaction (ASI) in a superconducting circuit. The ASI, which is also called Dzyaloshinskii-Moriya interaction, plays an important role in the formation of topological spin textures such as skyrmions. By periodically modulating the transition frequencies of three superconducting qubits interacting with a bus resonator, we synthesize a chiral ASI Hamiltonian with spin-gated chiral dynamics, which allow us to demonstrate a three-spin chiral logic gate and entangle up to five qubits in Greenberger-Horne-Zeilinger states. Our results pave the way for quantum simulation of magnetism with ASI and quantum computation with chiral spin states.
The conventional method of qubit measurements in circuit QED is employing the dispersive regime of qubit-cavity coupling, which results in an approximated scheme of quantum nondemolition(QND) readout. However, this scheme breaks down owing to the Purcell effect in the case of strong coupling and/or strong measurement drive. To remove the drawbacks of the dispersive readout, a recent proposal by virtue of longitudinal coupling suggests a new scheme to realize fast, high-fidelity and ideal QND readout of qubit state. In the present work, following dispersive readout, we construct the gradual partial-collapse theory for this new measurement scheme, in terms of both the quantum trajectory equation and quantum Bayesian approach. The longitudinal coupling provides as well a convenient method of cavity reset. In combination with the reset procedure, the established theory is expected to be useful for such as measurement-based feedback control and many other quantum applications associated with partial-collapse weak measurements.
We propose a scheme to generate Greenberger-Horne-Zeilinger (GHZ) state for N superconducting qubits in a circuit QED system. By sinusoidally modulating the qubit-qubit coupling, asynthetic magnetic field has been made which broken the time-reversal symmetry of the system. Directional rotation of qubit excitation can be realized in a three-qubit loop under the artificial magnetic field. Based on the special quality that the rotation of qubit excitation has different direction for single- and double-excitation loops, we can generate three-qubit GHZ state and extend this preparation method to arbitrary multiqubit GHZ state. Our analysis also shows that the scheme is robust to various operation errors and environmental noise.
The standard method of „measuring“ quantum wavefunction is the technique of {it indirect} quantum state tomography. Owing to conceptual novelty and possible advantages,an alternative {\it direct} scheme was proposed and demonstrated recently in quantum optics system. In this work we present a study on the direct scheme of measuring qubit state in the circuit QED system, based on weak measurement and weak value concepts. To be applied to generic parameter conditions, our formulation and analysis are carried out for finite strength weak measurement, and in particular beyond the bad-cavity and weak-response limits. The proposed study is accessible to the present state-of-the-art circuit-QED experiments.
Developing efficient and reliable schemes for practical quantum measurements is of essential importance to quantum information science and quantum metrology. In this work, for the increasinglyimportant superconducting circuit-QED setup, we present a rigorous approach starting with the quantum trajectory equation (QTE) to establish an {\it exact} quantum Bayesian rule. For the „realistic“ back-action (no qubit state information gain), we obtain important correction factors for arbitrary setup parameters. For the „spooky“ information gain back-action, we establish new prior distribution knowledge for the Bayesian inference, which differ from the standard Gaussian distribution and ensure to give strictly the same results as that by numerically integrating the QTE. Compared to the QTE approach, while keeping the same accuracy, the obtained quantum Bayesian rule has much higher efficiency to compute the stochastic change of the measured state. The generic method of this work opens also a new way to construct exact quantum Bayesian rules for quantum measurement in other systems.