We theoretically present new unit circuits of Kerr parametric oscillators (KPOs) with four-body interactions, which enable the scalable embedding of all-to-all connected logical Isingspins using the Lechner-Hauke-Zoller (LHZ) scheme. These unit circuits enable four-body interactions using linear couplers, making the circuit fabrication and characterization much simpler than those of conventional unit circuits with nonlinear couplers. Numerical calculations indicate that the magnitudes of the coupling constants can be comparable to those in conventional circuits. On the basis of this theory, we designed a four-KPO circuit and experimentally confirmed the four-body correlation by measuring the pump-phase dependence of the parity of the four-KPO states. We show that the choice of the pump frequencies are important not only to enable the four-body interaction, but to cancel the effects of other unwanted interactions. Using the circuit, we demonstrated the quantum annealing based on the LHZ scheme, where the strength of the interaction between the logical Ising spins is mapped to the local field and controlled by a coherent drive applied to each KPO.
A periodically-driven superconducting nonlinear resonator can implement a Kerr-cat qubit, which provides a promising route to a quantum computer with a long lifetime. However, the systemis vulnerable to pure dephasing, which causes unwanted excitations outside the qubit subspace. Therefore, we require a refrigeration technology which confines the system in the qubit subspace. We theoretically study on-chip refrigeration for Kerr-cat qubits based on photon-assisted electron tunneling at tunneling junctions, called quantum circuit refrigerator (QCR). Rates of QCR-induced deexcitations of the system can be changed by more than four orders of magnitude by tuning a bias voltage across the tunneling junctions. Unwanted QCR-induced bit flips are greatly suppressed due to quantum interference in the tunneling process, and thus the long lifetime is preserved. The QCR can serve as a tunable dissipation source which stabilizes Kerr-cat qubits.
Kerr-cat qubits are a promising candidate for fault-tolerant quantum computers owing to the biased nature of errors. The ZZ coupling between the qubits can be utilized for a two-qubitentangling gate, but the residual coupling causes unnecessary always-on gates and crosstalk. In order to resolve this problem, we propose a tunable ZZ-coupling scheme using two transmon couplers. By setting the detunings of the two couplers at opposite values, the residual ZZ couplings via the two couplers cancel each other out. We also apply our scheme to the Rzz(Θ) gate (ZZ rotation with angle Θ), one of the two-qubit entangling gates. We numerically show that the fidelity of the Rzz(−π/2) gate is higher than 99.9% in a case of 16 ns gate time and without decoherence.