Fixed-frequency qubits can suffer from always-on interactions that inhibit independent control. Here, we address this issue by experimentally demonstrating a superconducting architectureusing qubits that comprise of two capacitively-shunted Josephson junctions connected in series. Historically known as tunable coupling qubits (TCQs), such two-junction qubits support two modes with distinct frequencies and spatial symmetries. By selectively coupling only one type of mode and using the other as our computational basis, we greatly suppress crosstalk between the data modes while permitting all-microwave two-qubit gates.
Engineering light-matter interactions at the quantum level has been central to the pursuit of quantum optics for decades. Traditionally, this has been done by coupling emitters, typicallynatural atoms and ions, to quantized electromagnetic fields in optical and microwave cavities. In these systems, the emitter is approximated as an idealized dipole, as its physical size is orders of magnitude smaller than the wavelength of light. Recently, artificial atoms made from superconducting circuits have enabled new frontiers in light-matter coupling, including the study of „giant“ atoms which cannot be approximated as simple dipoles. Here, we explore a new implementation of a giant artificial atom, formed from a transmon qubit coupled to propagating microwaves at multiple points along an open transmission line. The nature of this coupling allows the qubit radiation field to interfere with itself leading to some striking giant-atom effects. For instance, we observe strong frequency-dependent couplings of the qubit energy levels to the electromagnetic modes of the transmission line. Combined with the ability to in situ tune the qubit energy levels, we show that we can modify the relative coupling rates of multiple qubit transitions by more than an order of magnitude. By doing so, we engineer a metastable excited state, allowing us to operate the giant transmon as an effective lambda system where we clearly demonstrate electromagnetically induced transparency.
Quantum bits (qubits) with long coherence times are an important element for the implementation of medium- and large-scale quantum computers. In the case of superconducting planar qubits,understanding and improving qubits‘ quality can be achieved by studying superconducting planar resonators. In this Paper, we fabricate and characterize coplanar waveguide resonators made from aluminum thin films deposited on silicon substrates. We perform three different substrate treatments prior to aluminum deposition: One chemical treatment based on a hydrofluoric acid clean, one physical treatment consisting of a thermal annealing at 880 degree Celsius in high vacuum, one combined treatment comprising both the chemical and the physical treatments. We first characterize the fabricated samples through cross-sectional tunneling electron microscopy acquiring electron energy loss spectroscopy maps of the samples‘ cross sections. These measurements show that both the chemical and the physical treatments almost entirely remove native silicon oxide from the substrate surface and that their combination results in the cleanest interface. We then study the quality of the resonators by means of microwave measurements in the „quantum regime“, i.e., at a temperature T~10 mK and at a mean microwave photon number ⟨n ph⟩∼1. In this regime, we find that both surface treatments independently improve the resonator’s intrinsic quality factor and that the highest quality factor is obtained for the combined treatment, Qi∼0.8 million. Finally, we find that the TLS quality factor averaged over a time period of 3 h is ∼3 million at ⟨n ph⟩∼10, indicating that substrate surface engineering can potentially reduce the TLS loss below other losses such as quasiparticle and vortex loss.
A practical quantum computer requires quantum bit (qubit) operations with low error rates in extensible architectures. We study a packaging method that makes it possible to addresshundreds of superconducting qubits by means of three-dimensional wires: The large-scale quantum socket. A qubit chip is housed in a superconducting box, where both box and chip dimensions lead to unwanted modes that can interfere with qubit operations. We theoretically analyze these interference effects in the context of qubit coherent leakage. We propose two methods to mitigate the resulting errors by detuning the resonance frequency of the modes from the qubit frequency. We perform detailed electromagnetic field simulations indicating that the resonance frequency of the modes increases with the number of installed three-dimensional wires and can be engineered to be significantly higher than the highest qubit frequency. Finally, we show preliminary experimental results towards the implementation of a large-scale quantum socket.
Extensible quantum computing architectures require a large array of quantum devices operating with low error rates. A quantum processor based on superconducting quantum bits can bescaled up by stacking microchips that each perform different computational functions. In this article, we experimentally demonstrate a thermocompression bonding technology that utilizes indium films as a welding agent to attach pairs of lithographically-patterned chips. We perform chip-to-chip indium bonding in vacuum at 190∘C with indium film thicknesses of 150nm. We characterize the dc and microwave performance of bonded devices at room and cryogenic temperatures. At 10mK, we find a dc bond resistance of 515nΩmm2. Additionally, we show minimal microwave reflections and good transmission up to 6.8GHz in a tunnel-capped, bonded device as compared to a similar uncapped device. As a proof of concept, we fabricate and measure a set of tunnel-capped superconducting resonators, demonstrating that our bonding technology can be used in quantum computing applications.
Quantum computing architectures are on the verge of scalability, a key requirement for the implementation of a universal quantum computer. The next stage in this quest is the realizationof quantum error correction codes, which will mitigate the impact of faulty quantum information on a quantum computer. Architectures with ten or more quantum bits (qubits) have been realized using trapped ions and superconducting circuits. While these implementations are potentially scalable, true scalability will require systems engineering to combine quantum and classical hardware. One technology demanding imminent efforts is the realization of a suitable wiring method for the control and measurement of a large number of qubits. In this work, we introduce an interconnect solution for solid-state qubits: The quantum socket. The quantum socket fully exploits the third dimension to connect classical electronics to qubits with higher density and better performance than two-dimensional methods based on wire bonding. The quantum socket is based on spring-mounted micro wires the three-dimensional wires that push directly on a micro-fabricated chip, making electrical contact. A small wire cross section (~1 mmm), nearly non-magnetic components, and functionality at low temperatures make the quantum socket ideal to operate solid-state qubits. The wires have a coaxial geometry and operate over a frequency range from DC to 8 GHz, with a contact resistance of ~150 mohm, an impedance mismatch of ~10 ohm, and minimal crosstalk. As a proof of principle, we fabricated and used a quantum socket to measure superconducting resonators at a temperature of ~10 mK.