Observation of Interface Piezoelectricity in Superconducting Devices on Silicon

  1. Haoxin Zhou,
  2. Eric Li,
  3. Kadircan Godeneli,
  4. Zi-Huai Zhang,
  5. Shahin Jahanbani,
  6. Kangdi Yu,
  7. Mutasem Odeh,
  8. Shaul Aloni,
  9. Sinéad Griffin,
  10. and Alp Sipahigil
The evolution of superconducting quantum processors is driven by the need to reduce errors and scale for fault-tolerant computation. Reducing physical qubit error rates requires further
advances in the microscopic modeling and control of decoherence mechanisms in superconducting qubits. Piezoelectric interactions contribute to decoherence by mediating energy exchange between microwave photons and acoustic phonons. Centrosymmetric materials like silicon and sapphire do not display piezoelectricity and are the preferred substrates for superconducting qubits. However, the broken centrosymmetry at material interfaces may lead to piezoelectric losses in qubits. While this loss mechanism was predicted two decades ago, interface piezoelectricity has not been experimentally observed in superconducting devices. Here, we report the observation of interface piezoelectricity at an aluminum-silicon junction and show that it constitutes an important loss channel for superconducting devices. We fabricate aluminum interdigital surface acoustic wave transducers on silicon and demonstrate piezoelectric transduction from room temperature to millikelvin temperatures. We find an effective electromechanical coupling factor of K2≈2×10−5% comparable to weakly piezoelectric substrates. We model the impact of the measured interface piezoelectric response on superconducting qubits and find that the piezoelectric surface loss channel limits qubit quality factors to Q∼104−108 for designs with different surface participation ratios and electromechanical mode matching. These results identify electromechanical surface losses as a significant dissipation channel for superconducting qubits, and show the need for heterostructure and phononic engineering to minimize errors in next-generation superconducting qubits.

Localization and reduction of superconducting quantum coherent circuit losses

  1. M. Virginia P. Altoé,
  2. Archan Banerjee,
  3. Cassidy Berk,
  4. Ahmed Hajr,
  5. Adam Schwartzberg,
  6. Chengyu Song,
  7. Mohammed Al Ghadeer,
  8. Shaul Aloni,
  9. Michael J. Elowson,
  10. John Mark Kreikebaum,
  11. Ed K. Wong,
  12. Sinead Griffin,
  13. Saleem Rao,
  14. Alexander Weber-Bargioni,
  15. Andrew M. Minor,
  16. David I. Santiago,
  17. Stefano Cabrini,
  18. Irfan Siddiqi,
  19. and D. Frank Ogletree
Quantum sensing and computation can be realized with superconducting microwave circuits. Qubits are engineered quantum systems of capacitors and inductors with non-linear Josephson
junctions. They operate in the single-excitation quantum regime, photons of 27μeV at 6.5 GHz. Quantum coherence is fundamentally limited by materials defects, in particular atomic-scale parasitic two-level systems (TLS) in amorphous dielectrics at circuit interfaces.[1] The electric fields driving oscillating charges in quantum circuits resonantly couple to TLS, producing phase noise and dissipation. We use coplanar niobium-on-silicon superconducting resonators to probe decoherence in quantum circuits. By selectively modifying interface dielectrics, we show that most TLS losses come from the silicon surface oxide, and most non-TLS losses are distributed throughout the niobium surface oxide. Through post-fabrication interface modification we reduced TLS losses by 85% and non-TLS losses by 72%, obtaining record single-photon resonator quality factors above 5 million and approaching a regime where non-TLS losses are dominant. [1]Müller, C., Cole, J. H. & Lisenfeld, J. Towards understanding two-level-systems in amorphous solids: insights from quantum circuits. Rep. Prog. Phys. 82, 124501 (2019)