Intrinsic Multi-Mode Interference for Passive Suppression of Purcell Decay in Superconducting Circuits

  1. Mustafa Bakr,
  2. Mohammed Alghadeer,
  3. Simon Pettersson Fors,
  4. Simone D. Fasciati,
  5. Shuxiang Cao,
  6. Atharv Mahajan,
  7. Smain Amari,
  8. Anton Frisk Kockum,
  9. and Peter Leek
Decoherence due to radiative decay remains an important consideration in scaling superconducting quantum processors. We introduce a passive, interference-based methodology for suppressing
radiative decay using only the intrinsic multi-mode structured environment of superconducting circuits. By taking into account the full electromagnetic mode-mode couplings within the device, we derive analytic conditions that enable destructive interference. These conditions are realized by introducing controlled geometric asymmetries — such as localized perturbations to the transmon capacitor — which increase mode hybridization and activate interference between multiple decay pathways. We validate this methodology using perturbation theory, full-wave electromagnetic simulations, and experimental measurements of a symmetry-broken transmon qubit with improved coherence times.

Comprehensive explanation of ZZ coupling in superconducting qubits

  1. Simon Pettersson Fors,
  2. Jorge Fernández-Pendás,
  3. and Anton Frisk Kockum
A major challenge for scaling up superconducting quantum computers is unwanted couplings between qubits, which lead to always-on ZZ couplings that impact gate fidelities by shifting
energy levels conditional on qubit states. To tackle this challenge, we introduce analytical and numerical techniques, including a diagrammatic perturbation theory and a state-assignment algorithm, as well as a refined intuitive picture for the workings of the ZZ coupling. Together, these tools enable a deeper understanding of the mechanisms behind the ZZ coupling and facilitate finding parameter regions of weak and strong ZZ coupling. We showcase these techniques for a system consisting of two fixed-frequency transmon qubits connected by a flux-tunable transmon coupler. There, we find three types of parameter regions with zero or near-zero ZZ coupling, all of which are accessible with current technology. We furthermore find regions of strong ZZ coupling nearby, which may be used to implement adiabatic controlled-phase gates. Our methods are applicable to many types of qubits and open up for the design of large-scale quantum computers with improved gate fidelities.