while obeying quantum speed limits remains a critical challenge. In this work, we experimentally optimize the charging process by leveraging the unique energy level structure of a superconducting capacitively-shunted flux qubit, using counterdiabatic pulses in the stimulated Raman adiabatic passage. Compared to previous studies, we impose two different norm constraints on the driving Hamiltonian, achieving optimal charging without exceeding the overall driving strength. Furthermore, we experimentally demonstrate a charging process that achieves the quantum speed limit. In addition, we introduce a dimensionless parameter to unify charging speed and stability, offering a universal metric for performance optimization. In contrast to metrics such as charging power and thermodynamic efficiency, the criterion quantitatively captures the stability of ergentropy while also considering the charging speed. Our results highlight the potential of the capacitively-shunted qubit platform as an ideal candidate for realizing three-level quantum batteries and deliver novel strategies for optimizing energy transfer protocols.
Stable and Efficient Charging of Superconducting C-shunt Flux Quantum Batteries
Quantum batteries, as miniature energy storage devices, have sparked significant research interest in recent years. However, achieving rapid and stable energy transfer in quantum batteries