Three Qubit Randomized Benchmarking

  1. David C. McKay,
  2. Sarah Sheldon,
  3. John A. Smolin,
  4. Jerry M. Chow,
  5. and Jay M. Gambetta
As quantum circuits increase in size, it is critical to establish scalable multiqubit fidelity metrics. Here we investigate three-qubit randomized benchmarking (RB) with fixed-frequency
transmon qubits coupled to a common bus with pairwise microwave-activated interactions (cross-resonance). We measure, for the first time, a three-qubit error per Clifford of 0.106 for all-to-all gate connectivity and 0.207 for linear gate connectivity. Furthermore, by introducing mixed dimensionality simultaneous RB — simultaneous one- and two-qubit RB — we show that the three-qubit errors can be predicted from the one- and two-qubit errors. However, by introducing certain coherent errors to the gates we can increase the three-qubit error to 0.302, an increase that is not predicted by a proportionate increase in the one- and two-qubit errors from simultaneous RB. This demonstrates three-qubit RB as a unique multiqubit metric.

Efficient Z-Gates for Quantum Computing

  1. David C. McKay,
  2. Christopher J. Wood,
  3. Sarah Sheldon,
  4. Jerry M. Chow,
  5. and Jay M. Gambetta
For superconducting qubits, microwave pulses drive rotations around the Bloch sphere. Here we show that the phase of these drives can be used to generate zero-duration arbitrary Z-gates
which, combined with two Xπ/2 gates, can generate any SU(2) gate. We perform randomized benchmarking using a Clifford set of Hadamard and Z-gates and show that the error per Clifford is reduced versus a set consisting of standard finite-duration X and Y gates. Z-gates can also correct unitary rotation errors for weakly anharmonic qubits as an alternative to pulse shaping techniques such as DRAG. We investigate leakage and show that a combination of DRAG pulse shaping to minimize leakage and Z-gates to correct rotation errors (DRAGZ) realizes a 13.3ns Xπ/2 gate characterized by low error (1.95[3]×10−4) and low leakage (3.1[6]×10−6). Ultimately leakage is limited by the finite temperature of the qubit, but this limit is two orders-of-magnitude smaller than pulse errors due to decoherence.

Procedure for systematically tuning up crosstalk in the cross resonance gate

  1. Sarah Sheldon,
  2. Easwar Magesan,
  3. Jerry M. Chow,
  4. and Jay M. Gambetta
We present improvements in both theoretical understanding and experimental implementation of the cross resonance (CR) gate that have led to shorter two-qubit gate times and interleaved
randomized benchmarking fidelities exceeding 99%. The CR gate is an all-microwave two-qubit gate offers that does not require tunability and is therefore well suited to quantum computing architectures based on 2D superconducting qubits. The performance of the gate has previously been hindered by long gate times and fidelities averaging 94-96%. We have developed a calibration procedure that accurately measures the full CR Hamiltonian. The resulting measurements agree with theoretical analysis of the gate and also elucidate the error terms that have previously limited the gate fidelity. The increase in fidelity that we have achieved was accomplished by introducing a second microwave drive tone on the target qubit to cancel unwanted components of the CR Hamiltonian.

Characterizing errors on qubit operations via iterative randomized benchmarking

  1. Sarah Sheldon,
  2. Lev S. Bishop,
  3. Easwar Magesan,
  4. Stefan Filipp,
  5. Jerry M. Chow,
  6. and Jay M. Gambetta
With improved gate calibrations reducing unitary errors, we achieve a benchmarked single-qubit gate fidelity of 99.95% with superconducting qubits in a circuit quantum electrodynamics
system. We present a method for distinguishing between unitary and non-unitary errors in quantum gates by interleaving repetitions of a target gate within a randomized benchmarking sequence. The benchmarking fidelity decays quadratically with the number of interleaved gates for unitary errors but linearly for non-unitary, allowing us to separate systematic coherent errors from decoherent effects. With this protocol we show that the fidelity of the gates is not limited by unitary errors, but by another drive-activated source of decoherence such as amplitude fluctuations.