Fast Universal Control of an Oscillator with Weak Dispersive Coupling to a Qubit

  1. Alec Eickbusch,
  2. Volodymyr Sivak,
  3. Andy Z. Ding,
  4. Salvatore S. Elder,
  5. Shantanu R. Jha,
  6. Jayameenakshi Venkatraman,
  7. Baptiste Royer,
  8. S. M. Girvin,
  9. Robert J. Schoelkopf,
  10. and Michel H. Devoret
Efficient quantum control of an oscillator is necessary for many bosonic applications including error-corrected computation, quantum-enhanced sensing, robust quantum communication,

Single-shot number-resolved detection of microwave photons with error mitigation

  1. Jacob C. Curtis,
  2. Connor T. Hann,
  3. Salvatore S. Elder,
  4. Christopher S. Wang,
  5. Luigi Frunzio,
  6. Liang Jiang,
  7. and Robert J. Schoelkopf
Single-photon detectors are ubiquitous and integral components of photonic quantum cryptography, communication, and computation. Many applications, however, require not only detecting

High-fidelity measurement of qubits encoded in multilevel superconducting circuits

  1. Salvatore S. Elder,
  2. Christopher S. Wang,
  3. Philip Reinhold,
  4. Connor T. Hann,
  5. Kevin S. Chou,
  6. Brian J. Lester,
  7. Serge Rosenblum,
  8. Luigi Frunzio,
  9. Liang Jiang,
  10. and Robert J. Schoelkopf
Qubit measurements are central to quantum information processing. In the field of superconducting qubits, standard readout techniques are not only limited by the signal-to-noise ratio,

Robust readout of bosonic qubits in the dispersive coupling regime

  1. Connor T. Hann,
  2. Salvatore S. Elder,
  3. Christopher S. Wang,
  4. Kevin Chou,
  5. Robert J. Schoelkopf,
  6. and Liang Jiang
High-fidelity qubit measurements play a crucial role in quantum computation, communication, and metrology. In recent experiments, it has been shown that readout fidelity may be improved