We present experiments on the driven dynamics of a two-level superconducting artificial atom. The driving strength reaches 4.78 GHz, significantly exceeding the transition frequencyof 2.288 GHz. The observed dynamics is described in terms of quasienergies and quasienergy states, in agreement with Floquet theory. In addition, we observe the role of pulse shaping in the dynamics, as determined by non-adiabatic transitions between Floquet states, and we implement subnanosecond single-qubit operations. These results pave the way to quantum control using strong driving with applications in quantum technologies.
Hybrid quantum circuits combine two or more physical systems, with the goal
of harnessing the advantages and strengths of the different systems in order to
better explore new phenomenaand potentially bring about novel quantum
technologies. This article presents a brief overview of the progress achieved
so far in the field of hybrid circuits involving atoms, spins and solid-state
devices (including superconducting and nanomechanical systems). We discuss how
these circuits combine elements from atomic physics, quantum optics, condensed
matter physics, and nanoscience, and we present different possible approaches
for integrating various systems into a single circuit. In particular, hybrid
quantum circuits can be fabricated on a chip, facilitating their future
scalability, which is crucial for building future quantum technologies,
including quantum detectors, simulators and computers.
We show a systematic construction for implementing general measurements on a
single qubit, including both strong (or projection) and weak measurements. We
mainly focus on linear opticalqubits. The present approach is composed of
simple and feasible elements, i.e., beam splitters, wave plates, and polarizing
beam splitters. We show how the parameters characterizing the measurement
operators are controlled by the linear optical elements. We also propose a
method for the implementation of general measurements in solid-state qubits.