So far, quantum-limited power meters are not available in the microwave domain, hindering measurement of photon number in itinerant quantum states. On the one hand, single photon detectorsaccurately detect single photons, but saturate as soon as two photons arrive simultaneously. On the other hand, more linear watt meters, such as bolometers, are too noisy to accurately detect single microwave photons. Linear amplifiers probe non-commuting observables of a signal so that they must add noise and cannot be used to detect single photons, either. Here we experimentally demonstrate a microwave photon-multiplication scheme which combines the advantages of a single photon detector and a power meter by multiplying the incoming photon number by an integer factor. Our first experimental implementation achieves a n = 3-fold multiplication with 0.69 efficiency in a 116 MHz bandwidth up to a input photon rate of 400 MHz. It loses phase information but does not require any dead time or time binning. We expect an optimised device cascading such multipliers to achieve number-resolving measurement of itinerant photons with low dark count, which would offer new possibilities in a wide range of quantum sensing and quantum computing applications.
Multiple atoms coherently interacting with an electromagnetic mode give rise to collective effects such as correlated decay and coherent exchange interaction, depending on the separationof the atoms. By diagonalizing the effective non-Hermitian many-body Hamiltonian we reveal the complex-valued eigenvalue spectrum encoding the decay and interaction characteristics. We show that there are significant differences in the emerging effects for an array of interacting anharmonic oscillators compared to those of two-level systems and harmonic oscillators. The bosonic decay rate of the most superradiant state increases linearly as a function of the filling factor and exceeds that of two-level systems in magnitude. Furthermore, with bosonic systems, dark states are formed at each filling factor. These are in strong contrast with two-level systems, where the maximal superradiance is observed at half filling and with larger filling factors superradiance diminishes and no dark states are formed. As an experimentally relevant setup of bosonic waveguide QED, we focus on arrays of transmon devices embedded inside a rectangular waveguide. Specifically, we study the setup of two transmon pairs realized experimentally in M. Zanner et al., arXiv.2106.05623 (2021), and show that it is necessary to consider transmons as bosonic multilevel emitters to accurately recover correct collective effects for the higher excitation manifolds.
Quantum information is typically encoded in the state of a qubit that is decoupled from the environment. In contrast, waveguide quantum electrodynamics studies qubits coupled to a modecontinuum, exposing them to a loss channel and causing quantum information to be lost before coherent operations can be performed. Here we restore coherence by realizing a dark state that exploits symmetry properties and interactions between four qubits. Dark states decouple from the waveguide and are thus a valuable resource for quantum information but also come with a challenge: they cannot be controlled by the waveguide drive. We overcome this problem by designing a drive that utilizes the symmetry properties of the collective state manifold allowing us to selectively drive both bright and dark states. The decay time of the dark state exceeds that of the waveguide-limited single qubit by more than two orders of magnitude. Spectroscopy on the second excitation manifold provides further insight into the level structure of the hybridized system. Our experiment paves the way for implementations of quantum many-body physics in waveguides and the realization of quantum information protocols using decoherence-free subspaces.